首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microstructure characterization study using transmission electron microscopy (TEM) was conducted to specify organic matter dynamics during the co-composting process of sewage sludge, green waste and barks. TEM results showed that ligneous and polyphenolic compounds brought by barks were not biodegraded during composting. Green waste brought more or less biodegraded ligneous constituents and also an active microbial potential. Chloroplasts and sludge flocs appeared to be relevant indicators of green waste and sewage sludge in composted products, as they were still viewable at the end of the process. TEM characterization of the final product highlighted two main fractions of organic matter, one easily available and a more recalcitrant one, and also a remaining microbial activity. Thus microstructure characterization appeared to be an appropriate way of taking the heterogeneity of the organic constituents' size and composition into account when attempting to specify such compost quality parameters as maturity and stability.  相似文献   

2.
The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.  相似文献   

3.
The scanning electron microscope was used to study the microorganisms on wheat roots grown in both soil and sand. Bacteria became common on the root surface only in the root hair region of young roots; nearer the tip of the root they were rare. Older roots had relatively high populations of bacteria. Bacteria were sometimes embedded in mucilage, of either plant or microbial origin, which seemed to bind the bacteria firmly to the root surface. Mineral grains on or near the roots of wheat were generally free of mucilage.  相似文献   

4.
The scanning electron microscope was used to study the microorganisms on wheat roots grown in both soil and sand. Bacteria became common on the root surface only in the root hair region of young roots; nearer the tip of the root they were rare. Older roots had relatively high populations of bacteria. Bacteria were sometimes embedded in mucilage, of either plant or microbial origin, which seemed to bind the bacteria firmly to the root surface. Mineral grains on or near the roots of wheat were generally free of mucilage.  相似文献   

5.
When aboveground materials are harvested for fuel production, such as with Sorghum bicolor, the sustainability of annual bioenergy feedstocks is influenced by the ability of root inputs to contribute to the formation and persistence of soil organic matter (SOM), and to soil fertility through nutrient recycling. Using 13C and 15N labeling, we traced sorghum root and leaf litter‐derived C and N for 19 months in the field as they were mineralized or formed SOM. Our in situ litter incubation experiment confirms that sorghum roots and leaves significantly differ in their inherent chemical recalcitrance. This resulted in different contributions to C and N storage and recycling. Overall root residues had higher biochemical recalcitrance which led to more C retention in soil (27%) than leaf residues (19%). However, sorghum root residues resulted in higher particulate organic matter (POM) and lower mineral associated organic matter (MAOM), deemed to be the most persistent fraction in soil, than leaf residues. Additionally, the overall higher root‐derived C retention in soil led to higher N retention, reducing the immediate recycling of fertility from root as compared to leaf decomposition. Our study, conducted in a highly aggregated clay‐loam soil, emphasized the important role of aggregates in new SOM formation, particularly the efficient formation of MAOM in microaggregate structures occluded within macroaggregates. Given the known role of roots in promoting aggregation, efficient formation of MAOM within aggregates can be a major mechanism to increase persistent SOM storage belowground when aboveground residues are removed. We conclude that promoting root inputs in S. bicolor bioenergy production systems through plant breeding efforts may be an effective means to counterbalance the aboveground residue removal. However, management strategies need to consider the quantity of inputs involved and may need to support SOM storage and fertility with additional organic matter additions.  相似文献   

6.
Soil samples from natural forests and adjacent farmland were analyzed to investigate the dynamics of soil organic matter of red soil in Southern, China. Based on the δ13C values and the content of soil organic matter, the data indicated that the turnover of soil organic matter under the virgin forest was slower than that under cultivation. Soil organic matter is fresh in coarse sand and oldest in fine silt and clay. Also, the soil light fraction contained the younger organic matter than soil heavy fraction and bulk soil. Deforestation has accelerated the decomposition rate of soil organic matter and reduced the proportion of active components in SOM and thus soil fertility.  相似文献   

7.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
城市污泥土地利用研究   总被引:159,自引:2,他引:157  
通过培养试验、盆栽试验和田间试验系统地研究了污泥的组分特征、性质及其农地和城市园林绿化地利用对作物或绿化灌木、土壤肥力及其环境的影响,结果表明,污泥富含有机质和氮磷养分,且养分当季有效性介于化肥农家肥之间。施用污泥将明显提高土壤肥力,表现改善土壤物理性质;增加土壤肥机质和氮磷水平,并增加土壤生物活性,因此施用污泥的处理作物产量较高,并有利于后茬作物的稳健生长。但污泥施用也存在重金属、病原物等污染  相似文献   

9.
10.
Many mine spoils present at the surface of reclamation sites in the Lower Lusatian mining district are carboniferous substrates, i.e. contain geogenic organic matter. Depending on its susceptibility to microbial degradation, geogenic organic matter might influence the establishment of a carbon requiring microflora in mine spoils. As geogenic organic matter contains substantial amounts of organic nitrogen it is also a potential source for plant available N. The objective of the present study was to quantify C and N mineralisation and microbial biomass in geogenic organic matter present at reclamation sites in Lower Lusatia. We also studied, whether these properties can be influenced by raising the originally low pH to near neutral conditions. In laboratory incubation studies, the rates of CO2 evolution and net N mineralisation were determined in geogenic organic matter and carboniferous mine spoil with and without addition of lime. At the same time, microbial biomass carbon was estimated. As a reference, soil organic matter originating from the humus layer of a 60-year-old Pinus sylvestris stand was used. As indicated by the initial rates of C mineralisation, geogenic carbon was microbially available but to a lower extent than soil organic carbon. During incubation, C mineralisation remained constant or tended to increase with time, depending on the origin of the sample, while it decreased in soil organic matter. Unlike in soil organic matter, in geogenic organic matter and carboniferous mine spoil, C mineralisation was not consistently promoted by lime addition. Prior to incubation, microbial biomass in geogenic organic matter and carboniferous mine spoil was about 10-fold lower than in soil organic matter and tended to increase with incubation time while it decreased in soil organic matter. Similar to C mineralisation, microbial biomass in geogenic organic matter increased after liming, while it declined in carboniferous mine spoil immediately after lime addition. Rates of net N mineralisation were very low in geogenic organic matter and carboniferous mine spoil regardless of the length of incubation and could not be enhanced by raising the pH. It was concluded, that in mine spoils where accumulation of soil organic matter has not yet occurred, geogenic organic matter can be favourable for the establishment of a heterotrophic microflora. However, in the short term, geogenic matter is no source for plant available N in mine spoils. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The convergent evolution of polyphenol-rich plant communities has occurred on highly acidic and infertile soils throughout the world. The pygmy forest in coastal northern California is an example of an ecosystem on an extremely infertile soil that has exceptionally high concentrations of polyphenols. Many negative feedbacks have been identified whereby plants degrade fertile soils through production of polyphenol-rich litter, sequestering soil nutrients into unavailable form and creating unfavorable conditions for seed germination, root growth, and nutrient uptake. But in the context of plant-litter-soil interactions in ecosystems adapted to soils that are inherently acidic and infertile (such as the pygmy forest), there are also many positive feedbacks that result from polyphenol production. By inhibiting decomposition, polyphenols regulate the formation of a mor-humus litter layer, conserving nutrients and creating a more favorable medium for root growth. Polyphenols shift the dominant pathway of nitrogen cycling from mineral to organic forms to minimize potential N losses from the ecosystem and maximize litter-N recovery by mycorrhizal symbionts. Polyphenol complexation of Al, Mn and Fe reduce potential Al toxicity and P fixation in soil. Polyphenols regulate organic matter dynamics, leading to the accumulation of organic matter with cation exchange capacity to minimize leaching of nutrient cations. Humic substances derived from polyphenolic precursors coat rhizosphere soil surfaces, improving physical and chemical conditions for root growth and nutrient cycling. Although their long-accepted adaptive value for antiherbivore defense is now in doubt, polyphenol alteration of soil conditions and regulation of nutrient cycling illustrate how fitness can be influenced by the extended phenotype in plant-litter-soil interactions.  相似文献   

12.
Plant root excretions in relation to the rhizosphere effect   总被引:1,自引:1,他引:0  
Summary 1. The treatment of soil with root exudate solution resulted in increased numbers of Gram-negative bacteria.2. The oxygen uptake and nitrification of root exudate treated soils were no greater than the controls unless readily decomposable substances such as glucose or peptone were added.3. The release of phosphate from soil organic matter or yeast nucleic acid was not increased with root exudate supplements.  相似文献   

13.
Rapid shoot proliferation was established by adventitious shoot formation on internodal segments. Cross sections of the shoot initiation area were observed microscopically and adventitious shoots were studied under the scanning electron microscope. Shoots were directly formed on the epidermis of internodal segments in vitro without callusing, but not on that of nodal segments with axillary buds. The use of media containing 0.01 – 0.1 mg/l 6-benzyladenine or 0.1 mg /l kinetin and culture under 16 h light increased the number of shoots per segment. The shoots thus obtained were rooted on phytohormone-free Woody Plant or Gamborg B5 solid medium, and were then transferred to soil. When potted, these grew well in a greenhouse. The emetic alkaloid content of adventitious shoots and regenerated plants was determined by HPLC. In vitro shoots cultured in Woody Plant liquid medium supplemented with 0.01 – 0.1 mg/l 6-benzyladenine contained 0.04 – 0.07 % dry wt. emetine and 0.4 – 0.5 % dry wt. cephaeline. One-year old regenerated plants cultivated in a greenhouse demonstrated the same alkaloid content (roots contained 0.82 % dry wt. emetine and 2.16 % dry wt. cephaeline) as the parental plant.Abbreviations MS Murashige — Skoog (Murashige and Skoog 1962) - 1/2 MS half strength MS - B5 Gamborg B5 (Gamborg et al. 1968)] - WP woody plant (Lloyd and McCown 1980) - RC root culture (Thomas and Davey 1982) - HF phytohormone free - BA 6-benzyladenine - Kin kinetin - SEM scanning electron microscopy - RDF rotating drum fermenter  相似文献   

14.
艾里克湖湿地植物群落特征指数与土壤因子的关系   总被引:3,自引:0,他引:3  
应用双向指示种分类法(TWINSPAN)和典范对应分析法(CCA),对干旱区艾里克湖湿地植物群落特征指数与土壤环境因子的关系进行研究.结果表明,研究区的29种主要植物,隶属12科27属,分为4个种类组,大多数物种丰富度较低,其中胡杨、毛柽柳、芦苇和西伯利亚泡泡刺是最常见的种类.TWINSPAN分析表明,该区25个样地分为3个主要类型组,组1包括6个样地,组2包括18个样地,组3包括1个样地,分别代表不同土壤有机质、全氮、全磷含量的3种生境.CCA排序结果同TWINSPAN分类结果基本一致,反映出植物群落分布格局随土壤因子变化的趋势,确定了影响该区植物群落盖度的土壤因子为有机质、全氮、全磷.  相似文献   

15.
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored.  相似文献   

16.
土壤有机质概念和分组技术研究进展   总被引:63,自引:2,他引:63  
土壤有机质一直是土壤学研究领域的重点,在过去的50年里,对土壤质量可持续性观念的增强和寻找快速判断人为因素对土壤质量影响方向指标的强烈愿望导致了土壤有机质的研究重点发生了急剧变化:对农业措施反映慢的土壤腐殖质类物质的研究正在退出土壤有机质研究领域,而侧重点逐渐转向了土壤中未受微生物作用或正在受微生物降解的有机残体;也出现了新的土壤有机质研究概念和对应测试手段:土壤有机质的比重分组、与有机质结合的土壤颗粒大小分组、土壤团聚体中的POM和iPOM以及土壤水溶性有机质和微生物体C等概念和测试手段被相继提了出来,土壤有机质的研究重点正在从土壤微生物的作用产物(腐殖质)向土壤微生物作用前的、具有部分生物活性的有机质(轻组有机质、砂粒组和粗粉砂粒组中的有机质、POM和iPOM)和完全具有生物活性的有机质(微生物体C和水溶性有机质)转移,这一过程与土壤有机质概念的拓展密不可分。  相似文献   

17.
We examined the distribution of soil organic carbon (SOC) fractions and roots with depth to improve our understanding of belowground carbon dynamics in the shortgrass steppe of northern Colorado. Weaver and others (1935) found that the surface 15 cm of soil contained over 70% of the total roots found in a tallgrass prairie soil profile, while only accounting for 40% of the profile soil organic matter. We asked whether the relationship between roots and SOC that Weaver and others (1935) found in the tallgrass prairie was also found in the shortgrass steppe. Weaver and others (1935) suggested that the dissimilarity between belowground biomass and SOC with depth is the result of variability in decomposition rates. In an effort to determine whether patterns of SOC are the result of short-term plant input patterns or decomposition, we measured the 14C content of potentially mineralizable C and particulate organic matter (POM) C ten years after pulse labeling shortgrass steppe vegetation. We also estimated the mass specific decomposition rate constant (kPOM) for POM C through a shortgrass steppe soil profile. We found that the distribution of roots and SOM in the shortgrass steppe were similar to those observed in tallgrass prairie (Weaver and others 1935), with a higher proportion of total root biomass in the surface soils than total soil organic matter. Fifty-seven percent of root biomass was found in the surface 15-cm, while this same soil layer contained 23 percent of profile soil organic C. We measured the highest accumulation of 14C at the soil surface (12.0 ng 14C·m-2·cm-1 depth), with the least accumulation from 75-100 cm (0.724 ng 14C·m-2·cm-1 depth). The highest values of potentially mineralizable C were at the soil surface, with no significant differences in total mineralizable C among the 10-100 cm soil depths. The contribution of POM C to total C reached a profile minimum at the 15-20 cm depth increment, with profile maxima in the surface 5 cm and from 75-100 cm. We estimated that the proportion of particulate organic matter lost annually (kPOM) reached a profile maximum of 0.097 yr-1 within the 10-15 cm depth increment. The 75-100 cm depth increment had the lowest kPOM value at 0.058 yr-1. Thus, within the same physical fraction of SOC, decomposition rates vary with depth by nearly twofold. This pattern of high decomposition rates from 10-15 cm with lower decomposition rates at the soil surface and deeper in the soil profile may be the result of higher water availability in sub-surface soils in the shortgrass steppe.  相似文献   

18.
Soil organic matter is known to influence arbuscular mycorrhizal (AM) fungi, but limited information is available on the chemical components in the organic matter causing these effects. We studied the influence of decomposing organic matter (pure cellulose and alfalfa shoot and root material) on AM fungi after 30, 100, and 300 days of decomposition in nonsterile soil with and without addition of mineral N and P. Decomposing organic matter affected maize root length colonized by the AM fungus Glomus claroideum in a similar manner as other plant growth parameters. Colonized root length was slightly increased by both nitrogen and phosphorus application and plant materials, but not by application of cellulose. In vitro hyphal growth of Glomus intraradices was increased by soil extracts from the treatments with all types of organic materials independently of mineral N and P application. Pyrolysis of soil samples from the different decomposition treatments revealed in total 266 recognizable organic compounds and in vitro hyphal growth of G. intraradices in soil extract positively correlated with 33 of these compounds. The strongest correlation was found with 3,4,5-trimethoxybenzoic acid methyl ester. This compound is a typical product of pyrolysis of phenolic compounds produced by angiosperm woody plants, but in our experiment, it was produced mainly from cellulose by some components of the soil microflora. In conclusion, our results indicate that mycelia of AM fungi are influenced by organic matter decomposition both via compounds released during the decomposition process and also by secondary metabolites produced by microorganisms involved in organic matter decomposition.  相似文献   

19.
Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP.  相似文献   

20.
The addition of composted buffalo manure may lead to qualitative and quantitative improvement of the organic matter content of degraded tropical agricultural soils in Northern Vietnam. The objectives of this study were to follow the biochemical changes occurring during composting of buffalo manure with and without earthworms during 3 months and to study the effect of the end products (compost and vermicompost) on soil biochemical parameters and plant growth after two months of incubation under controlled conditions in an open pot experiment. Our conceptual approach included characterisation of organic matter of the two composts before and after addition to soil by elemental, isotopic analysis and analytical pyrolysis and comparison with conventional fertilisation. We also analysed for lignin content and composition.Our results showed that composting in the presence of earthworms led to stronger transformation of buffalo manure than regular composting. Vermicompost was enriched in N-containing compounds and depleted in polysaccharides. It further contained stronger modified lignin compared to regular compost. In the bulk soil, the amendment of compost and vermicompost led to significant modification of the soil organic matter after 2 months of exposure to natural weather conditions. The lignin component of SOM was unaffected whatever the origin of the organic amendment. Compost and vermicompost amendments both enhanced aggregation and increased the amount of organic matter in water stable aggregates. However, vermicompost is preferable to compost due to its beneficial effect on plant growth, while having similar positive effects on quantity and quality of SOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号