首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study aimed to obtain xylanase exhibiting improved enzyme properties to satisfy the requirements for industrial applications. The baxA gene encoding Bacillus amyloliquefaciens xylanase A was mutated by error-prone touchdown PCR. The mutant, pCbaxA50, was screened from the mutant library by using the 96-well plate high-throughput screening method. Sequence alignment revealed the identical mutation point S138T in xylanase (reBaxA50) produced by the pCbaxA50. The specific activity of the purified reBaxA50 was 9.38 U/mg, which was 3.5 times higher than that of its parent expressed in Escherichia coli BL21 (DE3), named reBaxA. The optimum temperature of reBaxA and reBaxA50 were 55 °C and 50 °C, respectively. The optimum pH of reBaxA and reBaxA50 were pH 6 and pH 5, respectively. Moreover, reBaxA50 was more stable than reBaxA under thermal and extreme pH treatment. The half-life at 60 °C and apparent melting temperature of reBaxA50 were 9.74 min and 89.15 °C, respectively. High-performance liquid chromatography showed that reBaxA50 released xylooligosaccharides from oat spelt, birchwood, and beechwood xylans, with xylotriose as the major product; beechwood xylan was also the most thoroughly hydrolyzed. This study demonstrated that the S138T mutation possibly improved the catalytic activity and thermostability of reBaxA50.  相似文献   

3.

Background

Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn).

Results

Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S, Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%tot. xyl (wild-type Tx-Xyn) to 18.6% to 20.4%tot. xyl. Also, all five mutant enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 1500), thus procuring increases in overall wheat straw hydrolysis.

Conclusions

Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is linked to (i) improved ligand binding in a putative secondary binding site, (ii) the diminution of surface hydrophobicity, and/or (iii) the modification of thumb flexibility, induced by mutations at position 111. Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the lignin barrier.  相似文献   

4.
The endospore‐forming bacteria have persisted on earth perhaps 3Ga, leveraging the flexibility of their distinctive lifestyle to adapt to a remarkably wide range of environments. This process of adaptation can be investigated through the simple but powerful technique of laboratory evolution. Evolved strains can be analyzed by whole genome sequencing and an array of omics technologies. The intensively studied, genetically tractable endospore‐former, Bacillus subtilis, is an ideal subject for laboratory evolution experiments. Here, we describe the use of the B. subtilis model system to study the adaptation of these bacteria to reduced and stringent selection for endospore formation, as well as to novel environmental challenges of low atmospheric pressure, high ultraviolet radiation, and unfavourable growth temperatures. In combination with other approaches, including comparative genomics and environmental field work, laboratory evolution may help elucidate how these bacteria have so successfully adapted to life on earth, and perhaps beyond.  相似文献   

5.
Summary The native promoter of a xylanase gene isolated from Clostridium thermocellum was replaced with a strong promoter screened from Bacillus subtilis chromosomes. A part of the C-terminal region of the gene which is not related to the xylanase activity was removed. With the modified xylanase gene, B. subtilis was transformed and grown in LB medium. The xylanase gene was expressed well in B. subtilis and extracellular xylanase was produced up to 30 units per ml when the growth reached OD600 of 4.8.  相似文献   

6.
Summary A hybrid plasmid, pOXN29 (10.4 Mdal), coding the xylanase (xynA) and -xylosidase (xynB) genes of Bacillus pumilus IPO was constructed by the ligation of pBR322 and a 7.7 Mdal PstI-fragment of chromosomal DNA as reported in our previous paper (Panbangred et al. 1983). A deletion plasmid of pOXN29, pOXN293 (9.2 Mdal), which contains xynA and xynB, was ligated with pUB110 at an EcoRI site, and used to transform B. subtilis MI111. Two selected clones of B. subtilis as xylanase hyper-producers contained plasmids pOXW11 (4.2 Mdal) and pOXW12 (4.0 Mdal), both consisting of only pUB110, xynA, and its flanking regions, as the result of spontaneous deletion. These B. subtilis clones produced 2.7–3.0 times as much xylanase as B. pumilus. Escherichia coli and B. subtilis clones harbouring the hybrid plasmids synthesized xylanase and -xylosidase constitutively, whereas both enzymes were induced by xylose in B. pumilus.Xylanase synthesized by B. subtilis harbouring pOXW11 or pOXW12 was excreted into the medium like that of B. pumilus IPO, but xylanase synthesized in E. coli harbouring pOXN29, 293 or pOXW1 coding xynA was intracellular. In a previous investigation (Panbangred et al. 1983), xylanase was found to be located in the cytoplasm, not the periplasm nor the membrane fraction in E. coli cells harbouring pOXN29 derivatives. In spite of the abnormal location of xylanase synthesized in E. coli, the signal peptide was processed in the same way as in B. pumilus, with the same molecular weight and the same amino terminal sequences of xylanase prepared from E. coli cells and B. pumilus culture fluid.  相似文献   

7.
Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli   总被引:9,自引:0,他引:9  
R Bernier  H Driguez  M Desrochers 《Gene》1983,26(1):59-65
A gene coding for xylanase synthesis in Bacillus subtilis was isolated by direct shotgun cloning using Escherichia coli as a host. Following partial digestion of B. subtilis chromosomal DNA with PstI or EcoRI restriction enzymes, fragments ranging from 3 to 7 kb were introduced into the PstI or EcoRI sites of pBR325. Transformed colonies having lost either the ampicillin or chloramphenicol resistance markers were screened directly on 1% xylan plates. Out of 8000 transformants, ten xylanase-positive clones were identified by the clearing zone around lysozyme-treated colonies. Further characterization of one of the clones showed that the xylanase gene was present in a 3.9-kb insert within the PstI site of the plasmid pBR325. Retransformation of E. coli strain with the xylanase-positive hybrid plasmid pRH271 showed 100% transformation to xylanase production. The intracellular xylanase produced by the transformed E. coli was purified by ion exchange and gel permeation chromatography. The electrophoretic mobility of the purified xylanase indicated an Mr of 22 000.  相似文献   

8.
-galactosidase AgaB of Bacillus stearothermophilus was subjected to directed evolution in an effort to modify its regioselectivity. The wild-type enzyme displays a major 1,6 and minor 1,3 regioselectivity. We used random mutagenesis and staggered extension process (StEP) to obtain mutant enzymes displaying modified regioselectivity. We developed a screening procedure allowing first the elimination of AgaB mutants bearing the 1,6 regioselectivity and secondly the selection of those retaining a 1,3 regioselectivity. Our results show that, among the evolved enzymes that have lost most of their activity towards the 1,6 linkage both in hydrolysis and in synthesis, one (E901) has retained its 1,3 activity. However the transglycosylation level reached by this mutant is quite low versus that of the native enzyme. This work constitutes the first example of modification of glycosylhydrolase regioselectivity by directed evolution.  相似文献   

9.
The expression of the chloramphenicol-inducible chloramphenicol-acetyltransferase gene (cat), encoded on Staphylococcus aureus plasmid pUB112, is regulated via a translational attenuation mechanism. Ribosomes, which are arrested by chloramphenicol during synthesis of a short leader peptide, activate catmRNA translation by opening a 5'-located stem-loop structure, thus setting free the cat ribosome-binding site. We have determined the 5' and 3' ends of catmRNA and analysed its stability in Bacillus subtilis. In the absence of the antibiotic, the half-life of catmRNA is shorter than 0.5 min; it is enhanced to about 8 min by sub-inhibitory concentrations of the drug. No decay intermediates of catmRNA could be detected, indicating a very fast degradation after an initial rate-limiting step. ochre nonsense mutations in the 5' region of the cat structural gene, which eliminate catmRNA translation, did not affect its chloramphenicol-induced stabilization. Mutations in the leader-peptide coding region, which abolish ribosome stalling and, therefore, cat gene induction, also eliminate catmRNA stabilization. We conclude that catmRNA is stabilized on induction by a chloramphenicol-arrested ribosome, which physically protects a nuclease-sensitive target site in the 5' region of catmRNA against exo- or endonucleolytic initiation of degradation. This protection is analogous to ermA and ermC mRNA and seems to reflect a general mechanism for stabilization of mRNA derived from inducible antibiotic resistance genes in B. subtilis.  相似文献   

10.
Thermal Injury and Recovery of Bacillus subtilis   总被引:3,自引:6,他引:3       下载免费PDF全文
Exposure of Bacillus subtilis NCTC 8236 to sublethal temperatures produced a change in the sensitivity of the organism to salt and polymyxin. After 30 min at 47 C, 90% of the population was unable to grow on a modified sulfite polymyxin sulfadiazine agar containing an added 1% NaCl, 1% glucose, and 1% asparagine. The data presented demonstrate that thermal injury results in degradation of both 16S and 23S ribonucleic acid (RNA) and in damage to the cell membrane, suggested by leakage into the heating mestruum of material absorbing at 260 nm. When the cells were placed in a recovery medium (Trypticase soy broth), complete recovery, indicated by a returned tolerance to salt and polymyxin, occurred within 2 hr. The presence of a protein inhibitor (chloramphenicol) and cell wall inhibitors (vancomycin and penicillin) during recovery had no effect, whereas the presence of an RNA inhibitor (actinomycin D) effectively inhibited recovery. Further data demonstrated that the injured cells were able to resynthesize both species of ribosomal RNA during recovery by using the fragments which resulted from the injury process. Also, precursor 16S and precursor 23S particles accumulated during recovery. The maturation of the precursor particles during recovery was not affected by the presence of chloramphenicol in the recovery medium.  相似文献   

11.
We have used directed evolution methods to express a fungal enzyme, galactose oxidase (GOase), in functional form in Escherichia coli. The evolved enzymes retain the activity and substrate specificity of the native fungal oxidase, but are more thermostable, are expressed at a much higher level (up to 10.8 mg/l of purified GOase), and have reduced negative charge compared to wild type, all properties which are expected to facilitate applications and further evolution of the enzyme. Spectroscopic characterization of the recombinant enzymes reveals a tyrosyl radical of comparable stability to the native GOase from Fusarium.  相似文献   

12.
Alkalophilic Bacillus subtilis ASH produced high levels of xylanase using easily available inexpensive agricultural waste residues such as wheat bran, wheat straw, rice husk, sawdust, gram bran, groundnut and maize bran in solid-state fermentation (SSF). Among these, wheat bran was found to be best substrate. Xylanase production was highest after 72 h of incubation at 37 °C and at a substrate to moisture ratio of 1:2 (w/v). The inoculum level of 15% resulted in maximum production of xylanase. The enzyme production was stimulated by the addition of nutrients such as yeast extract, peptone and beef extract. In contrast, addition of glucose and xylose repressed the production of xylanase. The extent of repression by glucose (10%, w/v) was 81% and it was concentration-dependent. Supplementation of the medium with 4% xylose caused 59% repression. Under optimized conditions, xylanase production in SSF (8,964 U of xylanase/g dry wheat bran) was about twofold greater than in submerged fermentation. Thus, B. subtilis produced a very high level of xylanase in SSF using inexpensive agro-residues, a level which is much higher than that reported by any other bacterial isolate. Furthermore, the enzyme was produced at room temperature and with tap water without the addition of any mineral salt in SSF, leading to a marked decrease in the cost of xylanase production, which enhances its industrial potential.  相似文献   

13.
The introduction of disulfide bonds has been used as a strategy to enhance the stability of Bacillus circulans xylanase. The transition temperature of the S100C/N148C (DS1), V98C/A152C (DS2), and A1GC/G187,C188 (cXl) in comparison to the wild type was increased by 5.0, 4.1 and 3.8 degrees C, respectively. Interestingly, a combination of two disulfide bonds of DS1 and cXl (cDS1, circular disulfide 1) led to a 12 degrees C increase in the transition temperature. Importantly, an increase in the melting point and DeltaDeltaG values of the cDS1 mutant was cooperative. These results suggest that the mechanism of stabilization by disulfide bonds under irreversible denaturation condition is achieved through: (1) a change in the rate-limiting step on the denaturation pathway; (2) destabilizing the unfolded state without affecting the relative rate constants on the denaturation pathway (like cXl mutant); and (3) or combination of the two (cDS1 mutant).  相似文献   

14.
Bacillus subtilis can serve as a powerful platform for directed evolution, especially for secretory enzymes. However, cloning and transformation of a DNA mutant library in B. subtilis are not as easy as they are in Escherichia coli. For direct transformation of B. subtilis, here we developed a new protocol based on supercompetent cells prepared from the recombinant B. subtilis strain SCK6 and multimeric plasmids. This new protocol is simple (restriction enzyme‐, phosphatase‐ and ligase‐free), fast (i.e. 1 day) and of high efficiency (i.e. ~107 or ~104 transformants per µg of multimeric plasmid or ligated plasmid DNA respectively). Supercompetent B. subtilis SCK6 cells were prepared by overexpression of the competence master regulator ComK that was induced by adding xylose. The DNA mutant library was generated through a two‐round PCR: (i) the mutagenized DNA fragments were generated by error‐prone PCR and linearized plasmids were made using high‐fidelity PCR, and (ii) the multimeric plasmids were generated based on these two DNA templates by using overlap PCR. Both protein expression level and specific activity of glycoside hydrolase family 5 endoglucanse on regenerated amorphous cellulose were improved through this new system. To our limited knowledge, this study is the first report for enhancing secretory cellulase performance on insoluble cellulose.  相似文献   

15.
Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short β-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable “open” conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.  相似文献   

16.
Spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger were heat activated for different times at 60° and 80°C. Strain MD2 required considerable heat activation while B. subtilis var. niger did not. Maximum germination rates increased with heat activation dose and declined subsequently without loss of germinability. Germination rates and percentages were considerably greater in tryptone glucose extract (TGE) than in nutrient broth. The addition of 2°° dimethyl sulphoxide did not increase germination in nutrient broth. The spores of var. niger are more resistant to dry-heat than MD2 although they are less resistant to moist heat. Survivor curves in the dry-heat range 140°-170°C gave D-values from 4–123 to 0.106 min for MD2 and 5.679 to 0.233 min for var. niger recovered on TGE agar. D-values were lower on poorer media. The z-values for MD2 and var. niger on TGE were 18.7°C and 21.25C respectively.  相似文献   

17.
18.
19.
The thermal inactivation characteristics of Bacillus subtilis A spores suspended in skim milk with the use of large-scale ultrahigh temperature (UHT) processing equipment were investigated in terms of survival as measured with two plating media. Data on survival immediately after UHT treatments were recorded in temperature-survivor curves, time-survivor curves, and decimal reduction time (DRT) curves. The temperature-survivor curves emphasized that inactivation is accelerated more by increases in the treatment temperature than by increases in the exposure time. Time-survivor curves and DRT curves were not linear. Generally, exceedingly concave time-survivor curves were observed with the standard plating medium; however, only slightly concave curves were observed when CaCl(2) and sodium dipicolinate were added to the medium. For a given UHT sample, larger D values were obtained by use of the medium with the added CaCl(2) and sodium dipicolinate. The DRT curves of all data were concave and appeared to have two discrete slopes (z(D) values). The z(D) values observed in the upper UHT range (above 260 F; 127 C) were twice those observed at lower test temperatures.  相似文献   

20.
Hybrids between a strain of Bacillus subtilis isolated in our laboratory and having the ability to degrade xylan and other complex polysaccharides and Corynebacterium acetoacidophilum, a lysine producer, were prepared by protoplast fusion. Based on distinctive parental biochemical characteristics the fusants were grouped into 9 categories, viz. BC1 through BC9. Three of the hybrids, BC5, BC7a and BC7b, were tested for their ability to produce xylanase and lysine. Both BC7a and BC7b produced xylanase but BC5 did not, however all of them produced lysine albeit to different degrees. These results demonstrate that intergeneric gene transfer takes place through protoplast fusion between these 2 important genera of bacteria and some of the fusants inherit the useful traits of both the parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号