首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intraflagellar transport (IFT) particles of Chlamydomonas reinhardtii contain two distinct protein complexes, A and B, composed of at least 6 and 15 protein subunits, respectively. As isolated from C. reinhardtii flagella, IFT complex B can be further reduced to a ∼500-kDa core that contains IFT88, 2× IFT81, 2× IFT74/72, IFT52, IFT46, IFT27, IFT25, and IFT22. In this study, yeast-based two-hybrid analysis was combined with bacterial coexpression to show that three of the core B subunits, IFT88, IFT52, and IFT46, interact directly with each other and, together, are capable of forming a ternary complex. Chemical cross-linking results support the IFT52-IFT88 interaction and provide additional evidence of an association between IFT27 and IFT81. With previous studies showing that IFT81 and IFT74/72 interact to form a (IFT81)2(IFT74/72)2 heterotetramer and that IFT27 and IFT25 form a heterodimer, the architecture of complex B is revealing itself. Last, electroporation of recombinant IFT46 was used to rescue flagellar assembly of a newly identified ift46 mutant and to monitor in vivo localization and movement of the IFT particles.  相似文献   

2.
The intraflagellar transport machinery of Chlamydomonas reinhardtii   总被引:4,自引:1,他引:4  
First discovered in the green alga, Chlamydomonas , intraflagellar transport (IFT) is the bidirectional movement of protein particles along the length of eukaryotic cilia and flagella. Composed of ∼16 different proteins, IFT particles are moved out to the distal tip of the organelle by kinesin-II and are brought back to the cell body by cytoplasmic dynein 1b. Mutant analysis of the IFT motor and particle proteins using diverse organisms has revealed a conserved and essential role for IFT in the assembly and maintenance of cilia and flagella. IFT is thought to mediate this assembly through the delivery of axonemal precursors out to the distal tip of the growing organelle. Consistent with this model, the IFT particle proteins are rich in protein–protein binding motifs, suggesting that the particles may act as scaffolds for the binding of multiple cargoes. With most of the IFT proteins now identified at the level of the gene, this review will briefly examine both the structure and function of the IFT machinery of Chlamydomonas reinhardtii .  相似文献   

3.
Ferredoxins (FDXs) can distribute electrons originating from photosynthetic water oxidation, fermentation, and other reductant-generating pathways to specific redox enzymes in different organisms. The six FDXs identified in Chlamydomonas reinhardtii are not fully characterized in terms of their biological function. In this report, we present data from the following: (a) yeast two-hybrid screens, identifying interaction partners for each Chlamydomonas FDX; (b) pairwise yeast two-hybrid assays measuring FDX interactions with proteins from selected biochemical pathways; (c) affinity pulldown assays that, in some cases, confirm and even expand the interaction network for FDX1 and FDX2; and (d) in vitro NADP+ reduction and H2 photo-production assays mediated by each FDX that verify their role in these two pathways. Our results demonstrate new potential roles for FDX1 in redox metabolism and carbohydrate and fatty acid biosynthesis, for FDX2 in anaerobic metabolism, and possibly in state transition. Our data also suggest that FDX3 is involved in nitrogen assimilation, FDX4 in glycolysis and response to reactive oxygen species, and FDX5 in hydrogenase maturation. Finally, we provide experimental evidence that FDX1 serves as the primary electron donor to two important biological pathways, NADPH and H2 photo-production, whereas FDX2 is capable of driving these reactions at less than half the rate observed for FDX1.  相似文献   

4.
Mutant clones of Chlamydomonas reinhardtii defective for potassium transport were isolated and characterized. Of the four genes identified, three –TRK1, TRK2 and TRK3– encode high-affinity transport functions, and one gene, HKR1, encodes a low-affinity transport function. Characterization of the potassium dependence of recombinants possessing two mutant trk alleles suggests that the protein products of TRK2 and TRK3 interact functionally, and that TRK1 may serve a regulatory function. The mutant clone defective for a low-affinity potassium transporter was isolated by mutagenizing trk2-1 cells, which lack a functional high-affinity transporter, and screening surviving cells for dependence on very high potassium concentrations. The hkr1 phenotype is expressed only in the presence of trk2-1. Received: 24 August 1998 / Accepted: 16 November 1998  相似文献   

5.
Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT.  相似文献   

6.
Chloroplast NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport around photosystem I and chlororespiration in angiosperms. The Src homology 3 domain (SH3)-like fold protein NdhS/CRR31 is an NDH subunit that is necessary for high affinity binding of ferredoxin, indicating that chloroplast NDH functions as a ferredoxin:plastoquinone oxidoreductase. However, the mechanism of the interaction between NdhS and ferredoxin is unclear. In this study, we analyzed their interaction in planta by using site-directed mutagenesis of NdhS. In general, binding of ferredoxin to its target proteins depends on electrostatic interaction. In silico analysis predicted the presence of a positively charged pocket in the SH3-like domain of NdhS, where nine charged residues are highly conserved among plants. Systematic alteration of these sites with neutral glutamine revealed that only arginine 193 was required for high NDH activity in vivo. Further replacement of arginine 193 with negatively charged aspartate or glutamate or hydrophobic alanine significantly decreased the efficiency of ferredoxin-dependent plastoquinone reduction by NDH in ruptured chloroplasts. Similar results were obtained in in vivo analyses of NDH activity and electron transport. From these results, we propose that the positive charge of arginine 193 in the SH3-like domain of NdhS is critical for electrostatic interaction with ferredoxin in vivo.  相似文献   

7.
Toxin complexes from Xenorhabdus and Photorhabdus spp. bacteria represent novel insecticidal proteins. We purified a native toxin complex (toxin complex 1) from Xenorhabdus nematophilus. The toxin complex is composed of three different proteins, XptA2, XptB1, and XptC1, representing products from class A, B, and C toxin complex genes, respectively. We showed that recombinant XptA2 and co-produced recombinant XptB1 and XptC1 bind together with a 4:1:1 stoichiometry. XptA2 forms a tetramer of ~1,120 kDa that bound to solubilized insect brush border membranes and induced pore formation in black lipid membranes. Co-expressed XptB1 and XptC1 form a tight 1:1 binary complex where XptC1 is C-terminally truncated, resulting in a 77-kDa protein. The ~30-kDa C-terminally cleaved portion of XptC1 apparently only loosely associates with this binary complex. XptA2 had only modest oral toxicity against lepidopteran insects but as a complex with co-produced XptB1 and XptC1 had high levels of insecticidal activity. Addition of co-expressed class B (TcdB2) and class C (TccC3) proteins from Photorhabdus luminescens to the Xenorhabdus XptA2 protein resulted in formation of a hybrid toxin complex protein with the same 4:1:1 stoichiometry as the native Xenorhabdus toxin complex 1. This hybrid toxin complex, like the native toxin complex, was highly active against insects.  相似文献   

8.
The toroid-shaped nuclear protein export factor CRM1 is constructed from 21 tandem HEAT repeats, each of which contains an inner (B) and outer (A) α-helix joined by loops. Proteins targeted for export have a nuclear export signal (NES) that binds between the A-helices of HEAT repeats 11 and 12 on the outer surface of CRM1. RanGTP binding increases the affinity of CRM1 for NESs. In the absence of RanGTP, the CRM1 C-terminal helix, together with the HEAT repeat 9 loop, modulates its affinity for NESs. Here we show that there is an electrostatic interaction between acidic residues at the extreme distal tip of the C-terminal helix and basic residues on the HEAT repeat 12 B-helix that lies on the inner surface of CRM1 beneath the NES binding site. Small angle x-ray scattering indicates that the increased affinity for NESs generated by mutations in the C-terminal helix is not associated with large scale changes in CRM1 conformation, consistent with the modulation of NES affinity being mediated by a local change in CRM1 near the NES binding site. These data also suggest that in the absence of RanGTP, the C-terminal helix lies across the CRM1 toroid in a position similar to that seen in the CRM1-Snurportin crystal structure. By creating local changes that stabilize the NES binding site in its closed conformation and thereby reducing the affinity of CRM1 for NESs, the C-terminal helix and HEAT 9 loop facilitate release of NES-containing cargo in the cytoplasm and also inhibit their return to the nucleus.  相似文献   

9.
The pleiotropic features of obesity, retinal degeneration, polydactyly, kidney abnormalities, cognitive impairment, hypertension, and diabetes found in Bardet-Biedl syndrome (BBS) make this disorder an important model disorder for identifying molecular mechanisms involved in common human diseases. To date, 16 BBS genes have been reported, seven of which (BBS1, 2, 4, 5, 7, 8, and 9) code for proteins that form a complex known as the BBSome. The function of the BBSome involves ciliary membrane biogenesis. Three additional BBS genes (BBS6, BBS10, and BBS12) have homology to type II chaperonins and interact with CCT/TRiC proteins and BBS7 to form a complex termed the BBS-chaperonin complex. This complex is required for BBSome assembly. Little is known about the process and the regulation of BBSome formation. We utilized point mutations and null alleles of BBS proteins to disrupt assembly of the BBSome leading to the accumulation of BBSome assembly intermediates. By characterizing BBSome assembly intermediates, we show that the BBS-chaperonin complex plays a role in BBS7 stability. BBS7 interacts with BBS2 and becomes part of a BBS7-BBS2-BBS9 assembly intermediate referred to as the BBSome core complex because it forms the core of the BBSome. BBS1, BBS5, BBS8, and finally BBS4 are added to the BBSome core to form the complete BBSome.  相似文献   

10.
To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo. As proof of concept, we introduced single or multiple amino acid substitutions into the protein-protein-binding domains of either PB1 or PA, or both, to decrease binding affinity and polymerase activity substantially. As expected, upon generation of recombinant influenza A viruses (SC35M strain) containing these mutations, many pseudo-revertants appeared that partially restored PA-PB1 binding and polymerase activity. These polymerase assembly mutants displayed drastic attenuation in cell culture and mice. The attenuation of the polymerase assembly mutants was maintained in IFNα/β receptor knock-out mice. As exemplified using a H5N1 polymerase assembly mutant, this attenuation strategy can be also applied to other highly pathogenic influenza A virus strains. Thus, we provide proof of principle that targeted mutation of the highly conserved interaction domains of PA and PB1 represents a novel strategy to attenuate influenza A viruses.  相似文献   

11.
Anti-angiogenesis therapy is an emerging strategy for cancer treatment. This therapy has many advantages over existing treatments, such as fewer side effects, fewer resistance problems, and a broader tumor type spectrum. Integrin αvβ3 is a heterodimeric transmembrane glycoprotein that has been demonstrated to play a key role in tumor angiogenesis and metastasis. We have used a phage antibody display to humanize a mouse monoclonal antibody (mAb E10) against human integrin αvβ3 with a predetermined CDR3 gene. Three human phage antibodies were developed. Analysis of the humanized phage antibodies by phage ELISA revealed that the antibodies retained high antigen-binding activity and detected the same epitope as the parent mAb E10. A humanized single chain Fv (scFv) antibody was expressed in Escherichia coli in a soluble form. Analysis of the purified scFv indicated that it has the same specificity and affinity as the original mAb. Cell viability assays and xenograft model results suggested that the humanized scFv possesses anti-tumor growth activity in vitro and in vivo. This successful production of a humanized scFv with the ability to inhibit αvβ3-mediated cancer cell growth may provide a novel candidate for integrin αvβ3-targeted therapy.  相似文献   

12.
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.  相似文献   

13.
14.
15.
Photosystem I (PSI) is a multiprotein complex consisting of the PSI core and peripheral light-harvesting complex I (LHCI) that together form the PSI-LHCI supercomplex in algae and higher plants. The supercomplex is synthesized in steps during which 12–15 core and 4–9 LHCI subunits are assembled. Here we report the isolation of a PSI subcomplex that separated on a sucrose density gradient from the thylakoid membranes isolated from logarithmic growth phase cells of the green alga Chlamydomonas reinhardtii. Pulse-chase labeling of total cellular proteins revealed that the subcomplex was synthesized de novo within 1 min and was converted to the mature PSI-LHCI during the 2-h chase period, indicating that the subcomplex was an assembly intermediate. The subcomplex was functional; it photo-oxidized P700 and demonstrated electron transfer activity. The subcomplex lacked PsaK and PsaG, however, and it bound PsaF and PsaJ weakly and was not associated with LHCI. It seemed likely that LHCI had been integrated into the subcomplex unstably and was dissociated during solubilization and/or fractionation. We, thus, infer that PsaK and PsaG stabilize the association between PSI core and LHCI complexes and that PsaK and PsaG bind to the PSI core complex after the integration of LHCI in one of the last steps of PSI complex assembly.  相似文献   

16.
17.
Interleukin 1α (IL1α) plays an important role in several key biological functions, such as angiogenesis, cell proliferation, and tumor growth in several types of cancer. IL1α is a potent cytokine that induces a wide spectrum of immunological and inflammatory activities. The biological effects of IL1α are mediated through the activation of transmembrane receptors (IL1Rs) and therefore require the release of the protein into the extracellular space. IL1α is exported through a non-classical release pathway involving the formation of a specific multiprotein complex, which includes IL1α and S100A13. Because IL1α plays an important role in cell proliferation and angiogenesis, inhibiting the formation of the IL1α-S100A13 complex would be an effective strategy to inhibit a wide range of cancers. To understand the molecular events in the IL1α release pathway, we studied the structure of the IL1α-S100A13 tetrameric complex, which is the key complex formed during the non-classical pathway of IL1α release.  相似文献   

18.
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously.  相似文献   

19.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.  相似文献   

20.
The Henipavirus genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). In a previous study, we reported that in henipaviruses, the N-terminal domain of the phosphoprotein and the C-terminal domain of the nucleoprotein (N(TAIL)) are both intrinsically disordered. Here we show that Henipavirus N(TAIL) domains are also disordered in the context of full-length nucleoproteins. We also report the cloning, purification, and characterization of the C-terminal X domains (P(XD)) of Henipavirus phosphoproteins. Using isothermal titration calorimetry, we show that N(TAIL) and P(XD) form a 1:1 stoichiometric complex that is stable under NaCl concentrations as high as 1 M and has a K(D) in the μM range. Using far-UV circular dichroism and nuclear magnetic resonance, we show that P(XD) triggers an increase in the α-helical content of N(TAIL). Using fluorescence spectroscopy, we show that P(XD) has no impact on the chemical environment of a Trp residue introduced at position 527 of the Henipavirus N(TAIL) domain, thus arguing for the lack of stable contacts between the C termini of N(TAIL) and P(XD). Finally, we present a tentative structural model of the N(TAIL)-P(XD) interaction in which a short, order-prone region of N(TAIL) (α-MoRE; amino acids 473-493) adopts an α-helical conformation and is embedded between helices α2 and α3 of P(XD), leading to a relatively small interface dominated by hydrophobic contacts. The present results provide the first detailed experimental characterization of the N-P interaction in henipaviruses and designate the N(TAIL)-P(XD) interaction as a valuable target for rational antiviral approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号