首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for the determination of scutellarin in human plasma has been developed. Samples were prepared using solid phase extraction and analyzed on a C(18) column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of methanol-water (0.1% formic acid), using gradient procedure. The analyte and internal standard baicalin were both detected by use of selected reaction monitoring mode. The method was linear in the concentration range of 0.2-20.0 ng/mL. The lower limit of quantification (LLOQ) was 0.2 ng/mL. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 12.4%. The accuracy determined at three concentrations (1.0, 5.0 and 10.0 ng/mL for scutellarin) was within +/-5.0% in terms of relative error. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of scutellarin guttate pills in 20 healthy volunteers.  相似文献   

2.
A rapid and sensitive liquid chromatography-tandem mass spectrometric method (LC-MS/MS) had been developed and validated to determine the concentrations of BPR0L075 in rat plasma. After a simple protein precipitation of plasma samples by acetonitrile, BPR0L075 was analyzed on a C(8) column at a flow rate of 0.5 mL/min. The mobile phase consisted of a mixture of 10 mM ammonium acetate containing 0.1% formic acid and acetonitrile (20:80, v/v). Both BPR0L075 (analyte) and the internal standard (BPR0L092) were determined using electro-spray ionization and the MS data acquisition was via multiple reactions monitoring (MRM) in positive scanning model. The MS/MS ion transitions monitored are m/z 342.2/195.2 and 312.5/165.2 for BPR0L075 and BPR0L092, respectively. The low limit of quantitation was 0.5 ng/mL. Each plasma sample was chromatographed within 5 min. The method was validated with respect to linearity, accuracy, precision, recovery, and stability. A good linear relationship was observed over the concentration range of 0.5-1000 ng/mL (r>0.9994). Absolute recoveries ranged from 63.45 to 68.34% in plasma at the concentrations of 2, 40, 400, and 800 ng/mL. The intra- and inter-day accuracy ranged from 92.04 to 111.80%. Intra- and inter-day relative standard deviations were 1.08-3.29% and 1.96-5.46%, respectively. This developed and validated assay method had been successfully applied to a pharmacokinetic study after intravenous injection of BPR0L075 in rats at a dose of 5mg/kg.  相似文献   

3.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

4.
The determination of protein concentrations in plasma samples often provides essential information in biomedical research, clinical diagnostics, and pharmaceutical discovery and development. Binding assays such as ELISA determine meaningful free analyte concentrations by using specific antigen or antibody reagents. Concurrently, mass spectrometric technology is becoming a promising complementary method to traditional binding assays. Mass spectrometric assays generally provide measurements of the total protein analyte concentration. However, it was found that antibodies may bind strongly with the protein analyte such that total concentrations cannot be determined. Thus, a sample preparation process was developed which included a novel "denaturing" step to dissociate binding between antibodies and the protein analyte prior to solid phase extraction of plasma samples and LC-MS/MS analysis. In so doing, the total protein analyte concentrations can be obtained. This sample preparation process was further studied by LC-MS analysis with a full mass range scan. It was found that the protein of interest and other plasma peptides were pre-concentrated, while plasma albumin was depleted in the extracts. This capability of the sample preparation process could provide additional advantages in proteomic research for biomarker discovery and validation. The performance of the assay with the novel denaturing step was further evaluated. The linear dynamic range was between 100.9ng/mL and 53920.0ng/mL with a coefficient of determination (r(2)) ranging from 0.9979 and 0.9997. For LLOQ and ULOQ samples, the inter-assay CV was 12.6% and 2.7% and inter-assay mean accuracies were 103.7% and 99.5% of theoretical concentrations, respectively. For QC samples, the inter-assay CV was between 2.1% and 4.9%, and inter-assay mean accuracies were between 104.1% and 110.0% of theoretical concentrations.  相似文献   

5.
A sensitive and specific liquid chromatography-tandem mass spectrometric (LC-MS-MS) method has been developed to determine m-nisoldipine in rat plasma. Sample was pretreated by a single-step protein precipitation with acetonitrile, in contrast to the liquid-liquid procedure frequently used for the extraction of 1,4-dihydropyridines from biologic samples. Separation of analyte and internal standard (I.S.) was performed on a Symmetry RP-C(18) analytic column (50 mm x 4.6 mm, 3.5 microm) with a mobile phase consisting of acetonitrile-water (80:20, v/v) at a flow rate of 0.5 ml/min. The API 4000 triple quadrupole mass spectrometer was operated in multiple reaction monitoring (MRM) scan mode using TurboIonSpray ionization (ESI) source. The method was sensitive with a lower limit of quantification (LLOQ) of 0.2 ng/mL, with good linearity (r>or=0.9982) over the linear range of 0.2-20 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic and relative bioavailability studies of m-nisoldipine polymorphs in rats.  相似文献   

6.
A sensitive liquid chromatography-mass spectrometric (LC/MS) method for the quantification of schizandrin in rat plasma was developed and validated after solid-phase extraction (SPE). Chromatographic separation was achieved on a reversed-phase Shimadzu C(18) column with the mobile phase of acetonitrile-sodium acetate (10 micromol/L) and step gradient elution resulted in a total run time of about 11.7 min. The analytes were detected using an electrospray positive ionization mass spectrometry in the selected ion monitoring (SIM) mode. A good linear relationship was obtained in the concentration range studied (0.005-2.000 microg/mL) (r=0.9999). Lower limit of quantification (LLOQ) was 5 ng/mL and the lower limit of detection (LLOD) was 2 ng/mL using 100 microL plasma sample. Average recoveries ranged from 75.85 to 88.51% in plasma at the concentrations of 0.005, 0.100 and 1.000 microg/mL. Intra- and inter-day relative standard deviations were 5.95-12.93% and 3.87-14.53%, respectively. This method was successfully applied for the pharmacokinetic studies in rats.  相似文献   

7.
During method development in support of non-clinical studies in animal models, BMS-186716 was found to be extremely unstable in blood and plasma. Stabilization of the compound was achieved by reacting the compound with methyl acrylate (MA) in blood, from which the plasma was then prepared. While the resulting BMS-186716-MA adduct was found to be stable in dog plasma, and hence it was used as the basis for the method developed for analysis of dog plasma samples, the BMS-186716-MA adduct was found to be unstable in rat plasma as it was readily hydrolyzed to BMS-186716-acrylic acid (AA) by native esterases found in rat plasma. Although the finding of the instability of BMS-186716-MA in rat plasma was not the result of prospective planning, we were able to successfully develop a quantitative bioanalytical method using BMS-186716-AA as the analyte instead of the originally planned BMS-186716-MA analyte. The standard and quality-control (QC) samples were prepared by spiking blank plasma with BMS-186716-MA, and then allowing them to stand at room temperature for 1 h to convert BMS-186716-MA to BMS-186716-AA. After adding the internal standard BMS-188035-AA, each sample was acidified with HCl and then extracted with methyl tert.-butyl ether. The reconstituted extract was injected into a HPLC-electrospray ionization mass spectrometric system for detection by positive ion electrospray ionization. A lower limit of quantitation (LLQ) of 5 ng/ml was achieved, using 0.1 ml plasma and a standard curve range of 5–5000 ng/ml.  相似文献   

8.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the estimation of clonidine in human plasma. Clonidine was extracted from human plasma by using solid-phase extraction technique. Nizatidine was used as the internal standard. A Hypurity C18 (50 mm x 4.6 mm i.d., 5 microm particle size) column provided chromatographic separation of analyte followed by detection with mass spectrometry. The method involves a rapid solid-phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection up to picogram levels with a total run time of 3.0 min only. The method was validated over the range of 50-2500 pg/mL. The absolute recoveries for clonidine (71.86%) and IS (69.44%) achieved from spiked plasma samples were consistent and reproducible.  相似文献   

9.
As laboratories are called upon to develop novel, fast, and sensitive methods, here we present a completely automated method for the analysis of cocaine and its metabolites (benzoylecgonine, ecgonine methyl ester, ecgonine and cocaethylene) from whole blood. This method utilizes an online solid-phase extraction (SPE) with high performance liquid chromatographic separation and tandem mass spectrometric detection. Pretreatment of samples involve only protein precipitation and ultracentrifugation. An efficient online solid-phase extraction (SPE) procedure was developed using Hysphere MM anion sorbent. A gradient chromatography method with a Gemini C6-Phenyl (50mmx3.00mm i.d., 5microm) column was used for the complete separation of all components. Analysis was by positive ion mode electrospray ionization tandem mass spectrometry, using multiple reaction monitoring (MRM) to enhance the selectivity and sensitivity of the method. For the analysis, two MRM transitions are monitored for each analyte and one transition is monitored for each internal standard. With a 30-microL sample injection, linearity was analyte dependent but generally fell between 8 and 500ng/mL. The limits of detection (LODs) for the method ranged from 3 to 16ng/mL and the limits of quantitation (LOQs) ranged from 8 to 47ng/mL. The bias and precision were determined using a simple analysis of variance (ANOVA: single factor). The results demonstrate bias as <7%, and %precision as <9% for all components at each QC level.  相似文献   

10.
Atractylenolide III is a major active component in Atractylodes macrocephala. This paper describes a simple, rapid, specific and sensitive method for the quantification of atractylenolide III in rat plasma using a liquid-liquid extraction procedure followed by liquid chromatography mass spectrometric (LC-MS) analysis. A Kromasil 3.5 microm C(18) column (150 mm x 2.00 mm) was used as the analytical column. Linear detection responses were obtained for atractylenolide III concentration ranging from 5 to 500 ng L(-1). The precision and accuracy data, based on intra-day and inter-day variations over 5 days were within 10.29%. The lower limit of quantitation for atractylenolide III was 5 ng mL(-1), using 0.1 mL plasma for extraction and its recoveries were greater than 85% at the low, medium and high concentrations. The method has been successfully applied to a pharmacokinetic study in rats after an oral administration of atractylenolide III with a dose of 20.0 mg kg(-1). With the lower limits of quantification at 5 ng mL(-1) for atractylenolide III, this method was proved to be sensitive enough for the pharmacokinetics study of atractylenolide III.  相似文献   

11.
This study examines a novel sample preparation method for the determination of 11 hydroxy metabolites of polychlorinated biphenyls (PCBs) in plasma and organ tissues, followed by gas chromatography with mass spectrometric detection (GC/MS). The clean-up method was optimized to eliminate the interference matter by using a silica column and 10 mL of n-hexane/dichloromethane (4:6, v/v) as an eluent. Solid-phase and solvent extraction procedures were used for the plasma and tissues samples, respectively. Compared to C(18) and C(8) solid-phase, C(2) showed higher extraction efficiency with n-hexane as the eluent for plasma. The hydroxy-PCB extraction recoveries achieved with this combined extraction and clean-up procedure from plasma ranged from 87 to 117%, while those from tissues ranged from 82 to 111%. The linear detector responses for propyl derivatives of hydroxy-PCBs were obtained with the coefficients of determination varying from 0.992 to 0.998 in the concentration range of 0.1-20 ng mL(-1). The method detection limits ranged from 0.1 to 0.5 ng mL(-1) in 1 mL of plasma and from 0.1 to 0.5 ng g(-1) in 1g of tissues. This procedure was successfully applied to the study of 3-OH-2,3',4,4',5-PeCB in rat plasma and liver samples after intraperitoneal injection (20 mg/kg) of 2,3',4,4',5-PeCB.  相似文献   

12.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of chloroquine, an antimalarial drug, in plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method is based on simple protein precipitation with methanol followed by a rapid isocratic elution with 10 mM ammonium acetate buffer/methanol (25/75, v/v, pH 4.6) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 320.3-->247.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 2.0-489.1 ng/mL for chloroquine in dog plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.4 and 2.0 ng/mL, respectively in 0.05 mL plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range of 2.0-489.1 ng/mL. A run time of 2.0 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully used to analyze samples of dog plasma during non-clinical study of chloroquine.  相似文献   

13.
A method for determination of a gamma-secretase inhibitor, cis-3-[4-[(4-chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]propanoic acid (A), in human plasma and cerebrospinal fluid (CSF) has been developed to support the clinical investigation of compound A for its potential treatment of Alzheimer's disease. The method is based on HPLC with atmospheric pressure chemical ionization tandem mass spectrometric detection (APCI-MS/MS) in the negative ionization mode using a heated nebulizer interface. The addition of phosphoric acid at the ratio of 10-30microL per milliliter of human plasma or CSF was required during clinical sample collection to stabilize an acylglucuronide metabolite (C), which was potentially present in human plasma and CSF. Tween 20 (10% solution) was added at the ratio of 20microL per milliliter of CSF during CSF sample collection to prevent the loss of compound A during the storage of clinical samples. The compound A and its analog internal standard (B) in treated plasma or CSF were isolated from human plasma or CSF using solid phase extraction (SPE) in the 96 well format. The isolated analyte and internal standard were chromatographed on a Phenomenex Synergi Polar RP analytical column (50mmx3.0mm, 4microm), using a mobile phase consisting of 60/40 (v/v, %) acetonitrile/water at a flow-rate of 0.5mL/min. Tandem mass spectrometric detection was performed using a Sciex API 3000 tandem mass spectrometer operated in the multiple reaction monitoring (MRM) mode using precursor to product ion transitions of 441-->175 for A and 469-->175 for B, respectively. The assays were validated over the concentration range of 0.5-200ng/mL for human plasma and CSF. Replicate analyses (n=5) of spiked standards for both assays yielded a linear response with coefficients of variation less than 7% and accuracy within 5% of the nominal concentrations. In addition, the assays were automated to improve sample throughput by utilizing a Packard Multi PROBEII automated liquid handling system and a Tom-Tec Quadra 96 system. Numerous clinical studies have been supported using these assays.  相似文献   

14.
A rapid, sensitive, specific, accurate, and reproducible automated liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the quantitative determination of 1'-(2-amino-3-methylbenzoyl)-4-[[[(3-chlorophenyl)sulfonyl]phenyl]methyl]-1,4'-bipiperidine hydrochloride (SCH 211803) in plasma has been developed. The method was validated in rat and monkey plasma over the concentration range of 0.5-250 ng/ml using 2H(4)-SCH 211803 as the internal standard (IS). Automated 96-well plate protein precipitation (PP) with acetonitrile (ACN) was used for sample processing. The method employed a Betasil C18 column with a fast gradient for the separation of analyte and internal standard from the plasma matrix and a triple quadrupole mass spectrometer operated in positive ion multiple reaction monitoring (MRM) mode for detection. The method was used for the determination of SCH 211803 plasma concentrations to support pre-clinical studies.  相似文献   

15.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to quantify griseofulvin in human plasma using propranolol hydrochloride as internal standard (IS). Samples were prepared using solid phase extraction and analysed without drying and reconstitution. The analytes were chromatographed on Hypersil, hypurity C18 reverse phase column under isocratic conditions using 0.05% formic acid in water:acetonitrile (30:70, v/v) as the mobile phase. Total chromatographic run time was 3.0 min. Quantitation was done on a triple quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring (MRM) mode to detect parent-->product ion transition for analyte and IS. The method was validated for sensitivity, matrix effect, accuracy and precision, linearity, recovery and stability studies. Linearity in plasma was observed over the concentration range 20-3000 ng/mL for griseofulvin. Lower limit of quantification (LLOQ) achieved was 20 ng/mL with precision (CV) less than 10% using 5 microL injection volume. The absolute recovery of analyte (87.36%) and IS (98.91%) from spiked plasma samples was consistent and reproducible. Inter-batch and intra-batch coefficients of variation across four validation runs (LLOQ, LQC, MQC and HQC) was less than 7.5%. The accuracy determined at these levels was within +/-4.2% in terms of relative error. The method was applied to a pilot bioequivalence study of 500 mg griseofulvin tablet in six healthy human subjects under fed condition.  相似文献   

16.
Bestatin is a low molecular weight aminopeptidase inhibitor originally isolated from culture filtrates of Streptomyces olivoreticuli. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of bestatin in rat plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 50 microL plasma samples by solid phase extraction (SPE). Reverse-phase HPLC separation was accomplished on a Lichrospher C18 column (4.6 mm x 50 mm, 5 microm) with a mobile phase composed of methanol-water-formic acid (70:30:0.5, v/v/v) at a flow rate of 0.8 mL/min. The method had a chromatographic total run time of 3 min. A Varian 1200L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 309.2-->120.0 (bestatin) and 313.4-->138.0 (granisetron) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 5 ng/mL, with good linearity (r2 >or= 0.999) over the linear range of 5-2000 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of bestatin in rats.  相似文献   

17.
Apigenin is a flavone and is being developed for treatment of cardiovascular disease. A sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the measurement of apigenin and luteolin levels in rat plasma is described. Analytes were separated on a separation by a Luna C(18) (5 microm, 100 mm x 2.0 mm) column with acetonitrile:methanol:water (35:40:60, v/v/v) as a mobile phase. The eluted compounds were detected by tandem mass spectrometry. Good linearity (R(2)>0.9997) was observed for both analytes over the range of 2.5-5000 ng/mL in 0.1mL of rat plasma. The overall accuracy of this method was 93-105% for apigenin and 95-112% for luteolin in rat plasma. Intra-assay and inter-assay variabilities were less than 11% in plasma. The lowest quantitation limit for both apigenin and luteolin was 2.5 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC/MS/MS method was demonstrated in a pilot pharmacokinetic study in rats following intravenous administration of apigenin. Metabolism of apigenin to luteolin in vivo was established.  相似文献   

18.
A rapid and reliable electrospray tandem mass spectrometric method for soluble epoxide hydrolase (sEH) inhibitors in rat hepatic microsomes is described. Four synthesized sEH inhibitors were extracted from rat hepatic microsomes with ethyl acetate and were determined by HPLC using positive ion electrospray tandem mass spectrometry within 7 min. The relationship between signal intensity and concentration of sEH inhibitors was linear over the concentration range of 2.0 to 500 ng/mL per 5-microL injection with the use of a noncoeluting internal standard with a similar chemical structure. The intraassay precision was less than 12.4% relative standard deviation and accuracy ranged from -7.0 to 11.3% deviation from the theoretical values with five duplicate assays. The recovery of sEH inhibitors from rat hepatic microsomes, fortified at levels of 50, 100, and 250 ng/mL, averaged 74.2-107.7% with a RSD of 2.1-7.6%. This method was successfully applied to the quantification of residual sEH inhibitors in rat hepatic microsomes without interference.  相似文献   

19.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of cefdinir in human plasma. After a simple protein precipitation using trichloracetic acid, the post-treatment samples were applied to a prepacked RP18 Waters SymmetryShield column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of methanol-water-formic acid (25:75:0.075, v/v/v). The analyte and I.S. cefaclor were both detected by the use of selected reaction monitoring mode. The method was linear in the concentration range of 5-2,000 ng/ml. The lower limit of quantification was 5 ng/ml. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 4.3%. The accuracy determined at three concentrations (36, 360 and 1,800 ng/ml for cefdinir) ranged from 99.6 to 106.7% in terms of recovery. The chromatographic run time for each plasma sample was less than 3 min. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of cefdinir capsule in 12 healthy volunteers.  相似文献   

20.
A hydrophilic interaction chromatography (HILIC)/mass spectrometric assay was developed for the determination of zanamivir, a neuraminidase inhibitor used to treat influenza, in rat and monkey plasma. An organic solvent with hydrophilic properties, methanol, was used to precipitate proteins in plasma to assure the highly polar zanamivir of staying in solution. Chromatographic separation was obtained using a HILIC silica column with multiple reaction monitoring turboionspray positive ion detection. The stable label of zanamivir, [(13)C(1)(15)N(2)] GR121167C, was used as the internal standard. The assay was validated for the determination of zanamivir in rat and monkey plasma. The lower and upper limits of quantitation were 2 and 10000 ng/mL, using 0.05 mL plasma aliquot, respectively. The signal to noise ratio of a typical 2 ng/mL was approximately 5:1. The inter-day precision (relative standard deviation) and accuracy (relative error) in rat plasma, derived from the analysis of validation samples at 5 concentrations, ranged from 6 to 10% and -6.5 to 0.2%, respectively. The inter-day precision (relative standard deviation) and accuracy (relative error) in monkey plasma, derived from the analysis of validation samples at five concentrations, ranged from 2 to 8% and -2.3 to 2.1%, respectively. Zanamivir was found to be stable for at least 5 days at approximately -80 degrees C and at room temperature in plasma. This assay incorporates a simple protein precipitation with methanol and hydrophilic interaction chromatography which is sensitive, accurate, precise, and is being used to support oral formulation and toxicokinetic studies in rat and monkey, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号