首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonviral vector with iodine-nuclear localization sequence (namely, NLS-I) targeting breast cancer cells was fabricated. Ternary complexes were formed via charge interactions among NLS-I peptides, PEI 1800, and DNA, and we investigated their cellular internalization, nuclear accumulation as well as transfection efficiency. All the experiments were assessed by employing MCF-7 cells that express sodium/iodide symporter and HeLa cells that lack the expression of the symporter. In MCF-7 cells, cell internalization and nuclear accumulation of NLS-I was markedly increased compared to that in NLS. In addition, compared to that of the PEI1800/DNA complex, PEI1800/DNA/NLS-I complexes exhibited much enhanced luciferase reporter gene expression by up to 130-fold. By contrast, in HeLa cells, the evident improvements of cellular internalization, nuclear accumulation, and transfection efficiency by NLS-I were not observed. This study demonstrates an alternative method to construct a nonviral delivery system for targeted gene transfer into breast cancer cells.  相似文献   

2.
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.  相似文献   

3.
With the emerging role of hematopoietic stem cells as potential gene and cell therapy vehicles, there is an increasing need for safe and effective nonviral gene delivery systems. Here, we report that gene transfer and transfection efficiency in human hematopoietic and cord blood CD34+ cells can be enhanced by the use of low molecular weight polyethylenimine (PEI). PEIs of various molecular weights (800-750,000) were tested, and our results showed that the uptake of plasmid DNA by hematopoietic TF-1 cells depended on the molecular weights and the N/P ratios. Treatment with PEI 2K (m.w. 2000) at an N/P ratio of 80/1 was most effective, increasing the uptake of plasmid DNA in TF-1 cells by 23-fold relative to Lipofectamine 2000. PEI 2K-enhanced transfection was similarly observed in hematopoietic K562, murine Sca-1+, and human cord blood CD34+ cells. Notably, in human CD34+ cells, a model gene transferred with PEI 2K showed 21,043- and 513-fold higher mRNA expression levels relative to the same construct transfected without PEI or with PEI 25 K, respectively. Moreover, PEI 2K-treated TF-1 and human CD34+ cells retained good viability. Collectively, these results indicate that PEI 2K at the optimal N/P ratio might be used to safely enhance gene delivery and transfection of hematopoietic and human CD34+ stem cells.  相似文献   

4.
BACKGROUND: Non-viral methods of gene delivery, especially using polyethylenimine (PEI), have been widely used in gene therapy or DNA vaccination. However, the PEI system has its own drawbacks, which limits its applications. METHODS: We have developed a novel non-viral delivery system based on PEI coated on the surface of bacterial magnetic nanoparticles (BMPs). The ability of BMPs-PEI complexes to bind DNA was determined by retardation of plasmid DNA in agarose gel electrophoresis. The transfection efficiency of BMPs-PEI/DNA complexes into eukaryotic cells was determined by flow cytometric analysis. The MTT assay was invited to investigate the cytotoxicity of BMPs-PEI/DNA complexes. The expression efficiency in vivo of BMPs-PEI bound to the plasmid pCMVbeta encoding beta-galactosidase was evaluated intramuscularly inoculated into mice. The immune responses of in vivo delivery of BMPs-PEI bound plasmid pcD-VP1 were determined by MTT assay for T cell proliferation and ELISA for detecting total IgG antibodies. RESULTS: BMPs-PEI complexes could bind DNA and provide protection from DNase degradation. The transfection efficiency of BMPs-PEI/DNA complexes was higher than that in PEI/DNA complexes. Interestingly, in contrast to PEI, the BMPs-PEI complex was less cytotoxic to cells in vitro. We further demonstrated that the BMPs-PEI system can deliver an exogenous gene to animals and allow it to be expressed in vivo. Such expression resulted in higher levels of humoral and cellular immune responses against the target antigen compared to controls. CONCLUSIONS: We have developed a novel BMPs-PEI gene delivery system with a high transfection efficiency and low toxicity, which presents an attractive strategy for gene therapy and DNA vaccination.  相似文献   

5.
6.
Intracellular drug delivery is an important rout to reverse drug resistance of tumor cells. In this study, the linoleic acid (LA)-grafted chitosan oligosaccharide (CSO) was synthesized to construct a micellar delivery system for intracellular delivery. The synthesized linoleic acid-grafted chitosan oligosaccharide (CSO-LA) with 10.3% graft ratio of LA could form micelles in aqueous with 86.69 μg/ml critical micellar concentration (CMC). The CSO-LA micelle had 46.2±3.6 nm number average diameter and 36.0±3.3 mV zeta potential. Taking doxorubicin base (DOX) as a model drug, the drug-loaded CSO-LA micelles (CSO-LA/DOX) was then prepared. The drug encapsulation efficiencies of CSO-LA/DOX were as high as 80%, and the drug loading capacity could be improved by increasing the charged DOX. Using MCF-7, Doxorubicin·HCl resistant MCF-7 (MCF-7/ADR), K562 and Doxorubicin·HCl resistant K562 (K562/ADR) cells as model drug sensitive and drug resistant tumor cells, the experiments demonstrated the CSO-LA had excellent cellular uptake ability by either drug sensitive tumor cells or drug resistance tumor cells. The CSO-LA micelles could deliver DOX into tumor cells, and the DOX in cells was increased with incubation time. As a result, the cytotoxicities of DOX encapsulated in CSO-LA micelles against drug resistance tumor cells were improved significantly, comparing to that of Doxorubicin·HCl solution.  相似文献   

7.
With the aim of generating gene delivery systems for tumor targeting, we have synthesized a conjugate consisting of polyethylenimine (PEI) covalently modified with epidermal growth factor (EGF) peptides. Transfection efficiency of the conjugate was evaluated and compared to native PEI in three tumor cell lines: KB epidermoid carcinoma cells, CMT-93 rectum carcinoma cells, and Renca-EGFR renal carcinoma cells. Depending on the tumor cell line, incorporation of EGF resulted in an up to 300-fold increased transfection efficiency. This ligand-mediated enhancement and competition with free EGF strongly suggested uptake of the complexes through the EGF receptor-mediated endocytosis pathway. Shielded particles being crucial for systemic gene delivery, we studied the effect of covalent surface modification of EGF-PEI/DNA complexes with a poly(ethylene glycol) (PEG) derivative. An alternative way for the formation of PEGylated EGF-containing complexes was also evaluated where EGF was projected away from PEI/DNA core complexes through a PEG linker. Both strategies led to shielded particles still able to efficiently transfect tumor cells in a receptor-dependent fashion. These PEGylated EGF-containing complexes were 10- to 100-fold more efficient than PEGylated complexes without EGF.  相似文献   

8.
Quaternary complexes with condensed core of plasmid DNA, protamine, fish sperm DNA and shell of stearic acid grafted chitosan oligosaccharide (CSO-SA), were prepared. The CSO-SA could self-assemble to form nano-sized micelles in aqueous solution and demonstrated excellent internalization ability of tumor cells. Dynamic light scattering (DLS) measurement and transmission electrostatic microscope (TEM) images showed that quaternary complexes had spherical shape with about 25 nm number average diameter, and the size of quaternary complexes was smaller than that of CSO-SA micelles and CSO-SA micelles/plasmid DNA binary complexes. The transfection efficiencies of quaternary complexes on HEK293 and MCF-7 cells increased with incubation time, and were significantly higher than that of CSO-SA micelles/plasmid DNA binary complexes. The optimal transfection efficiency of quaternary complexes on HEK293 and MCF-7 cells measured by flow cytometer after 96 h was 23.82% and 41.43%, respectively. Whereas, the transfection efficiency of Lipofectamine? 2000 on HEK293 and MCF-7 cells after 96 h was 32.45% and 33.23%, respectively. The data of luciferease activity measurement showed that the optimal ratio of plasmid DNA:fish sperm DNA:protamine:CSO-SA was 1:1:5:5. The results indicated that the present quaternary complexes were potential non-viral gene delivery system.  相似文献   

9.
Endosomal release is an efficiency-limiting step for many nonviral gene delivery vehicles. In this work, nonviral gene delivery vehicles were modified with a membrane-lytic peptide taken from the endodomain of HIV gp41. Peptide was covalently linked to polyethylenimine (PEI) and the peptide-modified polymer was complexed with DNA. The resulting nanoparticles were shown to have similar physicochemical properties as complexes formed with unmodified PEI. The gp41-derived peptide demonstrated significant lytic activity both as free peptide and when conjugated to PEI. Significant increases in transgene expression were achieved in HeLa cells when compared to unmodified polyplexes at low polymer to DNA ratios. Additionally, peptide-modified polyplexes mediated significantly enhanced siRNA delivery compared to unmodified polyplexes. Despite increases in transgene expression and siRNA knockdown, there was no increase in internalization or binding of modified carriers as determined by flow cytometry. The hypothesis that the gp41-derived peptide increases the endosomal escape of vehicles is supported by confocal microscopy imaging of DNA distributions in transfected cells. This work demonstrates the use of a lytic peptide for improved trafficking of nonviral gene delivery vehicles.  相似文献   

10.
BACKGROUND: Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary. METHODS: In this study, a degradable poly(ester amine) carrier based on poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight linear PEI was prepared. Furthermore, we compared the gene expression of the polymer/DNA complexes using two delivery methods: intravenous administration as an invasive method and aerosol as a non-invasive method. RESULTS: The synthesized polymer had a relatively small molecular weight (MW = 7980) with 25 h half-life in vitro. The polymer/DNA complexes were formed at an N/P ratio of 9. The particle sizes and zeta-potentials of the complexes were dependent on N/P ratio. Compared to PEI 25K, the newly synthesized polymer exhibited high transfection efficiency with low toxicity. Poly(ester amine)-mediated gene expression in the lung and liver was higher than that of the conventional PEI carrier. Interestingly, non-invasive aerosol delivery induced higher gene expression in all organs compared to intravenous method in an in vivo mice study. Such an expressed gene via a single aerosol administration in the lung and liver remained unchanged for 7 days. CONCLUSIONS: Our study demonstrates that poly(ester amine) may be applied as an useful gene carrier.  相似文献   

11.
Tumor-targeting DNA complexes which can readily be generated by the mixing of stable components and freeze-thawed would be very advantageous for their subsequent application as medical products. Complexes were generated by the mixing of plasmid DNA, linear polyethylenimine (PEI22, 22 kDa) as the main DNA condensing agent, PEG-PEI (poly(ethylene glycol)-conjugated PEI) for surface shielding, and Tf-PEG-PEI (transferrin-PEG-PEI) to provide a ligand for receptor-mediated cell uptake. Within the shielding conjugates, PEG chains of varying size (5, 20, or 40 kDa) were conjugated with either linear PEI22 (22 kDa) or branched PEI25 (25 kDa). The three polymer components were mixed together at various ratios with DNA; particle size, surface charge, in vitro transfection activity, and systemic gene delivery to tumors was investigated. In general, increasing the proportion of shielding conjugate in the complex reduced surface charge, particle size, and in vitro transfection efficiency in transferrin receptor-rich K562 cells. The particle size or surface charge of the complexes containing the PEG-PEI conjugate did not significantly change after freeze-thawing, while complexes without the shielding conjugate aggregated. Complexes containing PEG-PEI conjugate efficiently transfected K562 cells after freeze-thawing. Furthermore the systemic application of freeze-thawed complexes exhibited in vivo tumor targeted expression. For complexes containing the luciferase reporter gene the highest expression was found in tumor tissue of mice. An optimum formulation for in vivo application, PEI22/Tf-PEG-PEI/PEI22-PEG5, containing plasmid DNA encoding for the tumor necrosis factor (TNF-alpha), inhibited tumor growth in three different murine tumor models. These new DNA complexes offer simplicity and convenience, with tumor targeting activity in vivo after freeze-thawing.  相似文献   

12.
We have investigated the effect of glucose deprivation treatment on the activation of mitogen activated protein kinases (MAPKs) in the drug-sensitive human breast carcinoma cells (MCF-7) and its drug resistant variant (MCF-7/ADR) cells. Western blots and in-gel kinase assays showed that glucose free medium was a strong stimulus for the activation of MAPK in MCF-7/ADR cells. No activation was seen in MCF-7 cells. MAPK was activated within 3 min of being in glucose free medium and it remained activated for over 1 h in MCF-7/ADR cells. After being returned to complete medium, 1 h was required for the MAPK to become deactivated. To investigate whether alternative sources of ATP could inhibit glucose deprivation induced MAPK activation, we added glutamine and glutamate to glucose deprived medium. The addition of glutamine did not reverse glucose deprivation induced MAPK activation in MCF-7/ADR cells. The addition of glutamate, however, decreased the MAPK activation and the length of time of activation. We observed an increase greater than three fold in MEK, Raf, Ras, and PKC activity with glucose deprivation in MCF-7/ADR cells. This suggests that glucose deprivation-induced MAPK activation is mediated through this signal transduction pathway.  相似文献   

13.
聚乙烯亚胺转基因影响因素的测定及其优化   总被引:6,自引:0,他引:6  
聚乙烯亚胺 (PEI)为阳离子多聚物 ,可浓缩DNA形成纳米级颗粒 ,作为基因释放载体转染真核细胞 .选用Mr2 5 0 0 0 ,分枝状的聚乙烯亚胺转染质粒 ,比较多种转基因效率的影响因素 .通过MTT法测定PEI对COS 7细胞的细胞毒性 .利用电泳阻滞实验测定PEI与DNA形成复合物时所需的比例 .通过PEI转染增强型绿色荧光蛋白的pEGFP质粒、编码β 半乳糖苷酶的pSVβ质粒 ,探索氯喹、白蛋白、血清、盐离子浓度、质粒剂量、细胞数量等对聚乙烯亚胺转基因效率的影响 .实验发现 ,PEI对细胞的毒性作用与剂量相关 .PEI DNA的N P比在 3 0以上方可完全结合DNA .溶酶体抑制剂氯喹可增加转染效率 .培养液中的白蛋白、血清会降低转染效率 .生理盐溶液作为配制PEI DNA复合物的溶媒 ,转染效率高于 5 %葡萄糖作为溶媒 .随着转染质粒剂量的增加 ,转染效率呈剂量依赖正效应 .聚乙烯亚胺是有效的体外真核细胞转染剂 ,可用于合成更复杂的基因释放载体 .  相似文献   

14.
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic polymer commonly used for nonviral gene delivery. Upon conjugation, the basic architecture and photophysical properties of the active TPA chromophore remain unchanged. At the usual N/P ratio (ratio of the PEI positive charges to the DNA negative charges) of 10 used for transfection, the transfection efficiency and cytotoxicity of the labeled PEI/DNA complexes were found to be comparable to those of the unlabeled PEI/DNA complexes. Moreover, when used in combination with unlabeled PEI (at a ratio of 1 labeled PEI to 3 unlabeled PEI), the labeled PEI does not affect the size of the complexes with DNA. The labeled PEI was successfully used in two-photon fluorescence correlation spectroscopy measurements, showing that at N/P = 10 most PEI molecules are free and the diffusion coefficient of the complexes is consistent with the 360 nm size measured by quasielastic light scattering. Finally, two-photon images of the labeled PEI/DNA complexes confirmed that the complexes enter into the cytoplasm of HeLa cells by endocytosis and hardly escape from the endosomes. As a consequence, the functionalized TPA chromophore appears to be an adequate tool to label the numerous polyamines used in nonviral gene delivery and characterize their complexes with DNA in two-photon applications.  相似文献   

15.
Cell surface-bound receptors represent suitable entry sites for gene delivery into cells by receptor-mediated endocytosis. Here we have taken advantage of the mannose receptor that is highly expressed on antigen-presenting dendritic cells for targeted gene transfer by employing mannosylpolyethylenimine (ManPEI) conjugates. Several ManPEI conjugates were synthesized and used for formation of ManPEI/DNA transfection complexes. Conjugates differed in the linker between mannose and polyethylenimine (PEI) and in the size of the PEI moiety. We demonstrate that ManPEI transfection is effective in delivering DNA into mannose receptor-expressing cells. Uptake of ManPEI/DNA complexes is receptor-specific, since DNA delivery can be competed with mannosylated albumin. Additionally, incorporation of adenovirus particles into transfection complexes effectively enhances transgene expression. This is particularly important for primary immunocompetent dendritic cells. It is demonstrated here that dendritic cells transfected with ManPEI/DNA complexes containing adenovirus particles are effective in activating T cells of T cell receptor transgenic mice in an antigen-specific fashion.  相似文献   

16.
Polyethylenimine (PEI) is one of the most efficient nonviral vectors for gene therapy. The aim of this study was to investigate the role of endocytosis in the transfection of synchronized L929 fibroblasts by PEI/DNA complexes. This was performed by confocal microscopy and flow cytometry, using the endocytosis marker FM4-64 and PEI/DNA complexes labeled either with the DNA intercalator YOYO-1, or with fluorescein covalently linked to PEI. Endocytosis appeared as the major if not the sole mode of entry of the PEI/DNA complexes into the L929 cells. The complexes followed a typical fluid phase endocytosis pathway and were efficiently taken up in less than 10 min in endosomes that did not exceed 200 nm in diameter. Later, the localization of the complexes became perinuclear and fusion between late endosomes was shown to occur. Comparison with the intracellular trafficking of the same complexes in EA.hy 926 cells (W.T. Godbey, K. Wu, A.G. Mikos, Proc. Natl. Acad. Sci. USA 96 (1999)) revealed that endocytosis of PEI/DNA complexes is strongly cell-dependent. In L929 cells, escape of the complexes from the endosomes is a major barrier for transfection. This limited the number of transfected cells to a few percent, even though an internalization of PEI/DNA complexes was observed in most cells. In addition, the entry of the complexes into the nucleus apparently required a mitosis and did not involve the lipids of the endosome membrane. This entry seems to be a short-lived event that involves only a few complexes.  相似文献   

17.
The major limitations to non-viral gene delivery are relatively low efficiency and cytotoxicity, which need to be addressed in the design of new vectors. In this study, negatively charged low density lipoproteins (LDL) were coated onto positively charged pVEGF/PEI complexes to form pVEGF/PEI/LDL terplexes by a two-step procedure. The biocompatible LDL was introduced to reduce the cytotoxicity of the gene delivery system and increase its affinity to cells. The successful formation of pVEGF/PEI/ LDL terplexes was confirmed by their near-neutral and slightly negative surface charges. The pVEGF/PEI/LDL terplexes were well-defined sub-micron spherical particles. On the cell viability assay, both of the PEI/LDL combined vector and pVEGF/PEI/LDL terplexes exhibited much lower cytotoxicity to HeLa cells and HUVE cells than those of PEI and pVEGF/PEI complexes, attributed to the shielding effect of the LDL. pEGFP/PEI/LDL terplexes showed significantly higher transfection efficiency in comparison to pEGFP/PEI complexes in serum-containing medium. pVEGF/PEI/LDL terplexes at their optimal N/P ratio and LDL/PEI weigh ratio induced higher expression levels of VEGF protein in HUVE cells than those of pVEGF/PEI complexes. Therefore, the pVEGF/PEI/LDL terplexes could be used as a promising gene delivery system to enhance VEGF protein expression.  相似文献   

18.
We have developed a novel vector constructed with pDNA, polyethylenimine (PEI), and mucin 1 (MUC1) aptamer for tumor-targeted gene delivery. The MUC1 aptamer and non-specific aptamer were employed to coat the pDNA/PEI complexes electrostatically and stable nanoparticles were formed. The addition of a non-specific aptamer to the pDNA/PEI complex decreased gene expression in the human lung cancer cell line, A549 cells expressing MUC1 regularly. At the same time, the pDNA/PEI/MUC1 aptamer complex showed higher gene expression than pDNA/PEI/non-specific aptamer complex. Furthermore, the pDNA/PEI/MUC1 aptamer complex showed markedly high gene expression in tumor-bearing mice; thus, pDNA/PEI/MUC1 aptamer complexes are useful as a tumor-targeted gene delivery system with high transfection efficiency.  相似文献   

19.
An electrochemical indirect competitive immunoassay protocol as a promising cytosensing strategy was developed to detect integrin β1 expression on human breast cancer MCF-7 cells and adriamycin-resistant human breast cancer MCF-7 (MCF-7/ADR) cells and quantify the cell number. Integrin α5β1 was adsorbed on the gold-nanoparticle modified glassy carbon electrode to bind integrin β1 monoclonal antibody (anti-CD29 mAb). A sandwich structure was then formed using nanocomposites which consisted of horseradish peroxidase (HRP) labeled anti-antibody and gold nanoparticles. HRP bound on the electrode surface could cause an amperometric response of the hydroquinone-H(2)O(2) system. The assembly of the sandwich structure was inhibited by tumor cells to give decreased enzyme-catalytic signals due to the capture of anti-CD29 mAb by integrin β1 on cell membranes. Under optimal conditions the relative current change (S) was proportional to the cell concentration from 1.6×10(3) to 2.0×10(6)cellsmL(-1) with a detection limit of 700cellsmL(-1). Integrin β1 expression in MCF-7/ADR cells was found to be significantly higher than that in MCF-7 cells, indicating the increased adhesion ability of MCF-7/ADR cells.  相似文献   

20.
BACKGROUND: The inherent ability of certain peptides or proteins of viral, prokaryotic and eukaryotic origin to bind DNA was used to generate novel peptide-based DNA delivery protocols. We have developed a recombinant approach to make fusion proteins with motifs for DNA-binding ability, Mu and membrane transduction domains, TAT, and tested them for their DNA-binding, uptake and transfection efficiencies. In one of the constructs, the recombinant plasmid was designed to encode the Mu moiety of sequence MRRAHHRRRRASHRRMRGG in-frame with TAT of sequence YGRKKRRQRRR to generate TAT-Mu, while the other two constructs, Mu and Mu-Mu, harbor a single copy or two copies of the Mu moiety. METHODS: Recombinant his-tag fusion proteins TAT-Mu, Mu and Mu-Mu were purified by overexpression of plasmid constructs using cobalt-based affinity resins. The peptides were characterized for their size and interaction with DNA, complexed with plasmid pCMVbeta-gal, and shown to transfect MCF-7, COS and CHOK-1 cells efficiently. RESULTS: Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu were cloned and overexpressed in BL21(DE3)pLysS with greater than 95% purity. The molecular weight of TAT-Mu was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to be 11.34 kDa while those of Mu and Mu-Mu were 7.78 and 9.83 kDa, respectively. Live uptake analysis of TAT-Mu, Mu and Mu-Mu as DP (DNA+peptide) or DPL (DNA+peptide+lipid) complexes into MCF-7 cells, followed by immunostaining and laser scanning confocal microscopy, demonstrated that the complexes are internalized very efficiently and localized in the nucleus. DNA:peptide complexes (DP) transfect MCF-7, COS and CHOK-1 cells. The addition of cationic liposomes enhances the uptake of the ternary complexes (DPL) further and also brings about 3-7-fold enhancement in reporter gene expression compared to DP alone. CONCLUSIONS: Recombinant proteins that are heterologous fusions, having DNA-binding domains and nuclear localization epitopes, generated in this study have considerable potential to facilitate DNA delivery and enhance transfection. The domains in these fusion proteins would be promising in the development of non-viral gene delivery vectors particularly in cells that do not divide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号