首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We tested the hypothesis that short-term nitrite therapy reverses vascular endothelial dysfunction and large elastic artery stiffening with aging, and reduces arterial oxidative stress and inflammation. Nitrite concentrations were lower (P < 0.05) in arteries, heart, and plasma of old (26-28 month) male C57BL6 control mice, and 3 weeks of sodium nitrite (50 mg L(-1) in drinking water) restored nitrite levels to or above young (4-6 month) controls. Isolated carotid arteries of old control mice had lower acetylcholine (ACh)-induced endothelium-dependent dilation (EDD) (71.7 ± 6.1% vs. 93.0 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (P < 0.05 vs. young), and sodium nitrite restored EDD (95.5 ± 1.6%) by increasing NO bioavailability. 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide dismutase (SOD) mimetic, apocynin, a nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, and sepiapterin (exogenous tetrahydrobiopterin) each restored EDD to ACh in old control, but had no effect in old nitrite-supplemented mice. Old control mice had increased aortic pulse wave velocity (478 ± 16 vs. 332 ± 12 AU, P < 0.05 vs. young), which nitrite supplementation lowered (384 ± 27 AU). Nitrotyrosine, superoxide production, and expression of NADPH oxidase were ~100-300% greater and SOD activity was ~50% lower in old control mice (all P < 0.05 vs. young), but were ameliorated by sodium nitrite treatment. Inflammatory cytokines were markedly increased in old control mice (P < 0.05), but reduced to levels of young controls with nitrite supplementation. Short-term nitrite therapy reverses age-associated vascular endothelial dysfunction, large elastic artery stiffness, oxidative stress, and inflammation. Sodium nitrite may be a novel therapy for treating arterial aging in humans.  相似文献   

2.
3.
To determine if short‐term calorie restriction reverses vascular endothelial dysfunction in old mice, old (O, n = 30) and young (Y, n = 10) male B6D2F1 mice were fed ad libitum (AL) or calorie restricted (CR, approximately 30%) for 8 weeks. Ex vivo carotid artery endothelium‐dependent dilation (EDD) was impaired in old ad libitum (OAL) vs. young ad libitum (YAL) (74 ± 5 vs. 95 ± 2% of maximum dilation, P < 0.05), whereas old calorie‐restricted (OCR) and YCR did not differ (96 ± 1 vs. 94 ± 3%). Impaired EDD in OAL was mediated by reduced nitric oxide (NO) bioavailability associated with decreased endothelial NO synthase expression (aorta) (P < 0.05), both of which were restored in OCR. Nitrotyrosine, a cellular marker of oxidant modification, was markedly elevated in OAL (P < 0.05), whereas OCR was similar to Y. Aortic superoxide production was 150% greater in OAL vs. YAL (P < 0.05), but normalized in OCR, and TEMPOL, a superoxide dismutase (SOD) mimetic that restored EDD in OAL (to 97 ± 2%), had no effect in Y or OCR. OAL had increased expression and activity of the oxidant enzyme, NADPH oxidase, and its inhibition (apocynin) improved EDD, whereas NADPH oxidase in OCR was similar to Y. Manganese SOD activity and sirtuin1 expression were reduced in OAL (P < 0.05), but restored to Y in OCR. Inflammatory cytokines were greater in OAL vs. YAL (P < 0.05), but unaffected by CR. Carotid artery endothelium‐independent dilation did not differ among groups. Short‐term CR initiated in old age reverses age‐associated vascular endothelial dysfunction by restoring NO bioavailability, reducing oxidative stress (via reduced NADPH oxidase–mediated superoxide production and stimulation of anti‐oxidant enzyme activity), and upregulation of sirtuin‐1.  相似文献   

4.
Rat peritoneal macrophages stimulated with lipopolysaccharide (LPS) and Phorbol myristate acetate (PMA) generated increased levels of superoxide anions (O2ú-) by 122% as compared to those stimulated with PMA alone. However, Nitric oxide (NO) synthase inhibitors-n-monomethyl arginine (nMMA) or spermine-HCI lowered the enhanced levels of O2ú- released by LPS treated macrophages. The Superoxide dismutase (SOD) activity in LPS treated macrophages was 51% lower than that observed in resident cells. NO synthase inhibitors prevented the loss of SOD activity in LPS treated cells. Exogenously added SOD during sensitization of cells with LPS also inactivated the enzyme. This inactivation of SOD is inhibited by Nitric oxide synthase inhibitors. PMA alone did not affect SOD activity. NO synthase inhibitors also did not affect PMA activated superoxide anion generation in macrophages. These studies indicate that nitric oxide generated by LPS treated macrophages can inactivate SOD activity.  相似文献   

5.
Lee SK  Kim HS  Song YJ  Joo HK  Lee JY  Lee KH  Cho EJ  Cho CH  Park JB  Jeon BH 《FEBS letters》2008,582(17):2561-2566
To examine the role of p66shc in endothelial dysfunction, we investigated the endothelium-dependent relaxation, protein expression and superoxide production in abdominal aortic coarctation rats. Endothelium-dependent relaxation to acetylcholine was impaired only in the aortic segments above the aortic coarctation (35.0+/-7.1% vs. 86.6+/-6.0% for sham control at 1 microM Ach). The aortic segments exposed to increased blood pressure showed a decreased phosphorylation of endothelial nitric oxide synthase, an increased phosphorylation of p66shc, and an increased superoxide production. Angiotensin II elicited a significantly increased phosphorylation of p66shc in the endothelial cells. Taken together, these findings suggest that the increased phosphorylation of p66shc is one of the important mediators in the impaired endothelium-dependent relaxation of aortic coarctation rats.  相似文献   

6.
Pentaerythritol tetranitrate (PETN) treatment reduces progression of atherosclerosis and endothelial dysfunction and decreases oxidation of low-density lipoprotein (LDL) in rabbits. These effects are associated with decreased vascular superoxide production, but the underlying molecular mechanisms remain unknown. Previous studies demonstrated that endogenous nitric oxide could regulate the expression of extracellular superoxide dismutase (ecSOD) in conductance vessels in vivo . We investigated the effect of PETN and overexpression of endothelial nitric oxide synthase (eNOS++) on the expression and activity of ecSOD. C57BL/6 mice were randomized to receive placebo or increasing doses of PETN for 4 weeks and eNOS++ mice with a several fold higher endothelial-specific eNOS expression were generated. The expression of ecSOD was determined in the lung and aortic tissue by real-time PCR and Western blot. The ecSOD activity was measured using inhibition of cytochrome C reduction. There was no effect of PETN treatment or eNOS overexpression on ecSOD mRNA in the lung tissue, whereas ecSOD protein expression increased from 2.5-fold to 3.6-fold ( P < 0.05) by 6 mg PETN/kg body weight (BW)/day and 60 mg PETN/kg BW/day, respectively. A similar increase was found in aortic homogenates. eNOS++ lung cytosols showed an increase of ecSOD protein level of 142 ± 10.5% as compared with transgene-negative littermates ( P < 0.05), which was abolished by Nω-nitro-L-arginine treatment. In each animal group, the increase of ecSOD expression was paralleled by an increase of ecSOD activity. Increased expression and activity of microvascular ecSOD are likely induced by increased bioavailability of vascular nitric oxide. Up-regulation of vascular ecSOD may contribute to the reported antioxidative and anti-atherosclerotic effects of PETN.  相似文献   

7.
We tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, increases arterial SIRT1 activity and reverses age‐associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium‐dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)‐mediated EDD (37 ± 4% vs. 66 ± 6%), compared with young mice (YC). This age‐associated impairment in EDD was restored in OC by the superoxide () scavenger TEMPOL (82 ± 7%). OC also had increased aortic pulse wave velocity (aPWV, 464 ± 31 cm s?1 vs. 337 ± 3 cm s?1) and elastic modulus (EM, 6407 ± 876 kPa vs. 3119 ± 471 kPa), measures of large elastic artery stiffness, compared with YC. OC had greater aortic production (2.0 ± 0.1 vs. 1.0 ± 0.1 AU), nitrotyrosine abundance (a marker of oxidative stress), and collagen‐I, and reduced elastin and vascular SIRT1 activity, measured by the acetylation status of the p65 subunit of NFκB, compared with YC. Supplementation with NMN in old mice restored EDD (86 ± 2%) and NO‐mediated EDD (61 ± 5%), reduced aPWV (359 ± 14 cm s?1) and EM (3694 ± 315 kPa), normalized production (0.9 ± 0.1 AU), decreased nitrotyrosine, reversed collagen‐I, increased elastin, and restored vascular SIRT1 activity. Acute NMN incubation in isolated aortas increased NAD+ threefold and manganese superoxide dismutase (MnSOD) by 50%. NMN supplementation may represent a novel therapy to restore SIRT1 activity and reverse age‐related arterial dysfunction by decreasing oxidative stress.  相似文献   

8.
Vascular endothelial dysfunction occurs during the human aging process, and it is considered as a crucial event in the development of many vasculopathies. We investigated the underlying mechanisms of this process, particularly those related with oxidative stress and inflammation, in the vasculature of subjects aged 18–91 years without cardiovascular disease or risk factors. In isolated mesenteric microvessels from these subjects, an age‐dependent impairment of the endothelium‐dependent relaxations to bradykinin was observed. Similar results were observed by plethysmography in the forearm blood flow in response to acetylcholine. In microvessels from subjects aged less than 60 years, most of the bradykinin‐induced relaxation was due to nitric oxide release while the rest was sensitive to cyclooxygenase (COX) blockade. In microvessels from subjects older than 60 years, this COX‐derived vasodilatation was lost but a COX‐derived vasoconstriction occurred. Evidence for age‐related vascular oxidant and inflammatory environment was observed, which could be related to the development of endothelial dysfunction. Indeed, aged microvessels showed superoxide anions (O2?) and peroxynitrite (ONOO?) formation, enhancement of NADPH oxidase and inducible NO synthase expression. Pharmacological interference of COX, thromboxane A2/prostaglandin H2 receptor, O2?, ONOO?, inducible NO synthase, and NADPH oxidase improved the age‐related endothelial dysfunction. In situ vascular nuclear factor‐κB activation was enhanced with age, which correlated with endothelial dysfunction. We conclude that the age‐dependent endothelial dysfunction in human vessels is due to the combined effect of oxidative stress and vascular wall inflammation.  相似文献   

9.
Tetrahydrobiopterin attenuates homocysteine induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Homocysteine is an independent risk factor for atherosclerotic vascular disease. It impairs endothelial function via increasing superoxide production and quenching nitric oxide (NO) release. Tetrahydrobiopterin (BH4) is a critical cofactor that couples nitric oxide synthase and facilitates the production of nitric oxide (vs. superoxide anions). In the first study, the effects of hyperhomocysteinemia (0.1 mM, 3 h) on endothelium-dependent vasorelaxation to ACh and A23187 were examined in isolated segments of rat aortae in the presence or absence of BH4 (0.1 mM). In the second study, the effects of hyperhomocysteinemia (24 h) on nitric oxide production and superoxide release (using lucigenin chemiluminescence) were studied in human umbilical vein endothelial cells in the absence or presence of BH4 (10 M). Homocysteine incubation impaired receptor-dependent and -independent endothelial function to ACh and A23187. This effect was attenuated by BH4. Furthermore, homocysteine exposure increased superoxide production and impaired agonist-stimulated nitric oxide release. These effects were attenuated by BH4 (p < 0.05). Hyperhomocysteinemia impairs endothelial function, in part due to a diminished bioavailability of BH4 with resultant uncoupling of nitric oxide synthase. BH4 may represent an important target for strategies aimed at improving endothelial dysfunction secondary to hyperhomocysteinemia.  相似文献   

10.
本文探讨蒺藜皂苷(STT)对糖基化终产物(AGEs)形成及AGEs诱导的内皮细胞功能障碍的影响。以荧光法检测AGEs体外形成,MTT法检测细胞存活率,试剂盒方法检测细胞及培养上清液中的一氧化氮(NO)水平、诱导型NO合酶(iNOS)活力和超氧阴离子水平(O2-.)。结果显示STT促进AGEs形成,并加剧AGEs诱导的内皮细胞生长抑制,提高细胞NO分泌,增加iNOS活力和O2-.水平。与海可、替告皂苷元作用进行比较,发现STT的细胞损伤作用可能是海可皂苷元引起的。提示STT未能抑制体外AGEs形成,对AGEs引起的内皮细胞功能障碍无明显保护作用,反而可能通过增强iNOS酶活加剧细胞损伤。  相似文献   

11.
《Free radical research》2013,47(6):537-547
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

12.
Hypoxia-reoxygenation (H-R) is associated with alterations in oxidant-antioxidant balance and L-arginine-nitric oxide system. Tocopherols decrease the activity of reactive oxygen species (ROS) and yet are not beneficial in clinical trials. It has been proposed that mixed tocopherols as found in nature may be more tissue protective than alpha-tocopherol alone found in commercial preparations. We compared the effect of a mixed tocopherol preparation with that of alpha-tocopherol alone on superoxide dismutase (SOD) activity and iNOS expression in cultured myocytes exposed to H-R. Myocytes from Sprague-Dawley rat hearts were subjected to hypoxia for 24 h followed by reoxygenation for 3 h H-R. Parallel groups of myocytes were pretreated with alpha-tocopherol alone or a mixed-tocopherol preparation (containing alpha-, gamma-, and delta-tocopherols) (50 microM) for 30 min. H-R resulted in myocyte injury (determined by LDH release), a decrease in SOD activity and an upregulation of iNOS expression/activity. Both tocopherol preparations attenuated cell injury and markedly decreased the effects of H-R on SOD activity and iNOS expression/activity (all P < 0.05 vs H-R group, n = 5). However, mixed-tocopherol preparation was much superior to alpha-tocopherol in terms of myocyte protection from the adverse effect of H-R (P < 0.05). Lack of efficacy of commercial tocopherol preparations in clinical trials may reflect absence of gamma- and delta-tocopherols.  相似文献   

13.
The use of methamphetamine (METH) leads to neurotoxic effects in mammals. These neurotoxic effects appear to be related to the production of free radicals. To assess the role of peroxynitrite in METH-induced dopaminergic, we investigated the production of 3-nitrotyrosine (3-NT) in the mouse striatum. The levels of 3-NT increased in the striatum of wild-type mice treated with multiple doses of METH (4 x 10 mg/kg, 2 h interval) as compared with the controls. However, no significant production of 3-NT was observed either in the striata of neuronal nitric oxide synthase knockout mice (nNOS -/-) or copper-zinc superoxide dismutase overexpressed transgenic mice (SOD-Tg) treated with similar doses of METH. The dopaminergic damage induced by METH treatment was also attenuated in nNOS-/- or SOD-Tg mice. These data further confirm that METH causes its neurotoxic effects via the production of peroxynitrite.  相似文献   

14.
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicylic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules.  相似文献   

15.
Multiple myeloma (MM) is a neoplastic disorder characterized by monoclonal multiplying of plasma cells. Although radiation, environmental factors, viruses and other factors have been suggested as potential causes of the disease, the aetiopathogenesis of MM is still obscure. This clinical study was designed to investigate the role of reactive oxygen species (ROS) in the aetiopathogenesis of the disease and the possible relationships between treatment and ROS production. For this purpose, erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities as well as plasma nitric oxide (NO) and malondialdehyde (MDA) levels were measured in 14 MM patients newly diagnosed at stage III. The relationship between the above-mentioned parameters and vincristine-adriamycin-dexamethasone (VAD) therapy were also investigated in the same patients. All the enzyme activities and the parameters of oxidative stress were found to be significantly reduced after VAD therapy. These findings suggest that ROS may be involved in the aetiopathogenesis of MM. Further investigations with a larger cohort of MM patients are needed to provide definitive data about the role of ROS in MM and the alternative therapeutic approaches to MM.  相似文献   

16.
To evaluate effects of different concentrations of nanosilver colloid on the cell culture of Sertoli cells, the proportion of lipid peroxidation, antioxidant capacity, nitric oxide (NO) production and genes expression of superoxide dismutases (SOD1 and SOD2) and nitric oxide synthases (eNOS and iNOS) were measured. Sertoli cells were incubated at concentrations of 25, 75 and 125 ppm nanosilver for 48 h. There was progressive lipid peroxidation in treatments according to increasing of nanosilver. Lipid peroxidation, as indicated by malondialdehyde levels, was significantly elevated by the highest concentration of silver colloid (125 ppm), although antioxidant capacity, as measured by ferric ion reduction, was unaffected. Nitrite, as an index of NO production was reduced only in 125 ppm of nanosilver. Expression of SOD1 gene was reduced in nanosilver-treated cells at all concentrations, whereas expression of SOD2 gene was reduced only in cells treated with 125 ppm nanosilver. Expression of iNOS gene was progressively increased with higher concentrations of nanosilver. Expression of eNOS gene was also increased in 125 ppm of nanosilver. In conclusion, toxic effects of nanosilver could be due to high lipid peroxidation and suppression of antioxidant mechanisms via reduced expression of SOD genes and increased expression of NOS genes.  相似文献   

17.
Cultured rat microglia produced extracellular superoxide at a rate of 814 +/- 52 pmol/min/million cells when stimulated with phorbol 12-myristate 13-acetate (PMA) as measured by extracellular cytochrome c reduction. This superoxide production resulted in a rapid rate of superoxide dismutase-sensitive nitric oxide (NO) breakdown (155 +/- 30 pmol of NO/min/million cells) when NO was added to PMA stimulated microglia. Lipopolysaccharide/interferon-gamma (LPS/IFN-gamma)-activated microglia produce NO at the rate of 145 +/- 42 pmol/min/million cells and activated astrocytes at the rate of 51 +/- 9 pmol/min/million cells as estimated by NO electrode. Both types of cells maintained a steady-state level of 0.5-0.7 microm NO, only in the presence of L-arginine. Addition of PMA to activated microglia (but not activated astrocytes) caused the rapid and complete disappearance of all extracellular NO (but was restored in the presence of superoxide dismutase) followed by the production of peroxynitrite (as measured by urate-sensitive oxidation of dihydrorhodamine). Co-incubation of activated microglia with cerebellar granule neurones resulted in NO inhibition of neuronal respiration, but this was rapidly removed by PMA-induced breakdown of the NO. Thus, microglial NADPH oxidase can regulate the bioavailability of NO and the production of peroxynitrite.  相似文献   

18.
This study aimed to characterize the redox interaction between 3,4-dihydroxyphenylacetic acid (DOPAC) and nitric oxide (.NO), and to assess the reductive and oxidative decay pathways of the DOPAC semiquinone originating from this interaction. The reaction between DOPAC and.NO led to the formation of the DOPAC semiquinone radical, detected by electron paramagnetic resonance (EPR) and stabilized by Mg(2+), and the nitrosyl anion detected as nitrosylmyoglobin. The EPR signal corresponding to the DOPAC semiquinone was modulated as follows: (i) it was suppressed by glutathione and ascorbic acid with the formation of new EPR spectra corresponding to the glutathionyl and ascorbyl radical, respectively; (ii) it was enhanced by Cu,Zn-superoxide dismutase; the enzyme also accelerated the decay of the semiquinone species to DOPAC quinone. These results are interpreted as a one-electron oxidation of DOPAC by.NO; the reductive decay of the semiquinone back to DOPAC was facilitated by reducing agents, such as glutathione and ascorbate, whereas the oxidative decay to DOPAC quinone was facilitated by superoxide dismutase. The latter effect is understood in terms of a reversible conversion of nitrosyl anion to.NO by the enzyme. The biological relevance of these reactions is also discussed in terms of the reactivity of peroxynitrite towards DOPAC as a model with implications for aerobic conditions.  相似文献   

19.
Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14?mg/kg) or allopurinol (25?mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50?mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100?mg/kg) (superoxide dismutase inhibitor) were performed 1?h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1β secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1β production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号