首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the fusion-associated small transmembrane (FAST) protein family are a distinct class of membrane fusion proteins encoded by nonenveloped fusogenic reoviruses. The 125-residue p14 FAST protein of reptilian reovirus has an approximately 38-residue myristoylated N-terminal ectodomain containing a moderately apolar N-proximal region, termed the hydrophobic patch. Mutagenic analysis indicated sequence-specific elements in the N-proximal portion of the p14 hydrophobic patch affected cell-cell fusion activity, independent of overall effects on the relative hydrophobicity of the motif. Circular dichroism (CD) of a myristoylated peptide representing the majority of the p14 ectodomain suggested this region is mostly disordered in solution but assumes increased structure in an apolar environment. From NMR spectroscopic data and simulated annealing, the soluble nonmyristoylated p14 ectodomain peptide consists of an N-proximal extended loop flanked by two proline hinges. The remaining two-thirds of the ectodomain peptide structure is disordered, consistent with predictions based on CD spectra of the myristoylated peptide. The myristoylated p14 ectodomain peptide, but not a nonmyristoylated version of the same peptide nor a myristoylated scrambled peptide, mediated extensive lipid mixing in a liposome fusion assay. Based on the lipid mixing activity, structural plasticity, environmentally induced conformational changes, and kinked structures predicted for the p14 ectodomain and hydrophobic patch (all features associated with fusion peptides), we propose that the majority of the p14 ectodomain is composed of a fusion peptide motif, the first such motif dependent on myristoylation for membrane fusion activity.  相似文献   

2.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.  相似文献   

3.
The p10 fusion-associated small transmembrane protein of avian reovirus induces extensive syncytium formation in transfected cells. Here we show that p10-induced cell-cell fusion is restricted by rapid degradation of the majority of newly synthesized p10. The small ectodomain of p10 targets the protein for degradation following p10 insertion into an early membrane compartment. Paradoxically, conservative amino acid substitutions in the p10 ectodomain hydrophobic patch that eliminate fusion activity also increase p10 stability. The small amount of p10 that escapes intracellular degradation accumulates at the cell surface in a relatively stable form, where it mediates cell-cell fusion as a late-stage event in the virus replication cycle. The unusual relationship between a nonstructural viral membrane fusion protein and the replication cycle of a nonenveloped virus has apparently contributed to the evolution of a novel mechanism for restricting the extent of virus-induced cell-cell fusion.  相似文献   

4.
The homologous p10 fusion-associated small transmembrane (FAST) proteins of the avian (ARV) and Nelson Bay (NBV) reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36–40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER). The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1) ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2) p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3) the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic efficiency and species-specific assembly of p10 homomultimers into cholesterol-dependent fusion platforms in the plasma membrane.  相似文献   

5.
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane fusion proteins. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive fusion proteins can mediate cell-cell fusion and syncytium formation. Contained within the 40-residue ectodomain of the p10 FAST protein resides an 11-residue sequence of moderately apolar residues, termed the hydrophobic patch (HP). Previous studies indicate the p10 HP shares operational features with the fusion peptide motifs found within the enveloped virus membrane fusion proteins. Using biotinylation assays, we now report that two highly conserved cysteine residues flanking the p10 HP form an essential intramolecular disulfide bond to create a cystine loop. Mutagenic analyses revealed that both formation of the cystine loop and p10 membrane fusion activity are highly sensitive to changes in the size and spatial arrangement of amino acids within the loop. The p10 cystine loop may therefore function as a cystine noose, where fusion peptide activity is dependent on structural constraints within the noose that force solvent exposure of key hydrophobic residues. Moreover, inhibitors of cell surface thioreductase activity indicate that disruption of the disulfide bridge is important for p10-mediated membrane fusion. This is the first example of a viral fusion peptide composed of a small, spatially constrained cystine loop whose function is dependent on altered loop formation, and it suggests the p10 cystine loop represents a new class of viral fusion peptides.  相似文献   

6.
The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar characterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.  相似文献   

7.
Membrane fusion is a protein catalyzed biophysical reaction that involves the simultaneous intermixing of two phospholipid bilayers and of the aqueous compartments bound by their respective bilayers. In the case of enveloped virus fusogens, short hydrophobic or amphipathic fusion peptides that are components of the larger fusion complex are essential for the membrane merger event. The process of cell–cell membrane fusion and syncytium formation induced by the nonenveloped fusogenic orthoreoviruses is driven by the Fusion-Associated Small Transmembrane (FAST) proteins, which are similarly dependent on the action of fusion peptides. In this article, we describe some simple methods for the biophysical characterization of viral membrane fusion peptides. Liposomes serve as an ideal model system for characterizing peptide–membrane interactions because their size, shape and composition can be readily manipulated. We present details of fluorescence assays used to elucidate the kinetics of membrane fusion as well as complimentary assays used to characterize peptide-induced liposome binding and aggregation.  相似文献   

8.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

9.
Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic N(exoplasmic)/C(cytoplasmic) topology. This topology results in the translocation of the smallest ectodomain ( approximately 20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.  相似文献   

10.
Surfactant protein B (SP-B) is a hydrophobic, 79 amino acid peptide that regulates the structure and function of surfactant phospholipid membranes in the airspaces of the lung. Addition of SP-B to liposomes composed of DPPC/PG (7:3) leads to membrane binding, destabilization, and fusion, ultimately resulting in rearrangement of membrane structure. The goal of this study was to map the fusogenic and lytic domains of SP-B and assess the effects of altered fusion and lysis on surface activity. Synthetic peptides were generated to predicted helices and/or interhelical loops of SP-B and tested for fusion, lytic, and surface activities. The N-terminal half of SP-B (residues 1-37), which includes the nonhelical N-terminal amino acids in addition to helices 1 and 2, promoted rapid liposome fusion whereas shorter peptides were significantly less effective. The requirements for optimal surface tension reduction were similar to those for fusion; in contrast, helix 1 (residues 7-22) alone was sufficient for liposome lysis. The C-terminal half of SP-B (residues 43-79), which includes helices 3, 4, and 5, exhibited significantly lower levels of fusogenic, lytic, and surface tension reducing activities compared to the N-terminal region. These results indicate that SP-B fusion, lytic and surface activities map predominantly to the N-terminal half of SP-B. Amino acid substitutions in synthetic peptides corresponding to the N-terminal half of SP-B indicated that, in general, decreased fusion or lytic activities were associated with altered surface tension reducing properties of the peptide. However, the presence of fusion and lytic activities alone could not account for the surface tension reducing property of SP-B. We propose a model in which association of helix 1 with lipids leads to membrane permeabilization but not aggregation; helix 2 mediates membrane cross-linking (aggregation), which, in turn, facilitates lipid mixing, membrane fusion, and interfacial adsorption/surface tension reduction.  相似文献   

11.
Florian Seiler 《FEBS letters》2009,583(14):2343-9646
Complexins (Cpxs) and synaptotagmins regulate calcium-dependent exocytosis. A central helix in Cpx confers specific binding to the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) fusion machinery. An accessory helix in the amino-terminal region inhibits membrane fusion by blocking SNAREpin zippering. We now show that an amphipathic helix in the carboxy-terminal region of CpxI binds lipid bilayers and affects SNARE-mediated lipid mixing in a liposome fusion assay. The substitution of a hydrophobic amino acid within the helix by a charged residue abolishes the lipid interaction and the stimulatory effect of CpxI in liposome fusion. In contrast, the introduction of the bulky hydrophobic amino acid tryptophan stimulates lipid binding and liposome fusion. This data shows that local Cpx-lipid interactions can play a role in membrane fusion.  相似文献   

12.
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.  相似文献   

13.
Wang S  York J  Shu W  Stoller MO  Nunberg JH  Lu M 《Biochemistry》2002,41(23):7283-7292
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein complex (gp120-gp41) promotes viral entry by mediating the fusion of viral and cellular membranes. Formation of a stable trimer-of-hairpins structure in the gp41 ectodomain brings the two membranes into proximity, leading to membrane fusion. The core of this hairpin structure is a six-helix bundle in which three carboxyl-terminal outer helices pack against an inner trimeric coiled coil. Here we investigate the role of these conserved interhelical interactions on the structure and function of both the envelope glycoprotein and the gp41 core. We have replaced each of the eight amino acids at the buried face of the carboxyl-terminal helix with a representative amino acid, alanine. Structural and physicochemical characterization of the alanine mutants shows that hydrophobic interactions are a dominant factor in the stabilization of the six-helix bundle. Alanine substitutions at the Trp628, Trp631, Ile635, and Ile642 residues also affected envelope processing and/or gp120-gp41 association and abrogated the ability of the envelope glycoprotein to mediate cell-cell fusion. These results suggest that the amino-terminal region of the gp41 outer-layer alpha-helix plays a key role in the sequence of events associated with HIV-1 entry and have implications for the development of antibodies and small-molecule inhibitors of this conserved element.  相似文献   

14.
A conformational change of the homotrimeric glycoprotein hemagglutinin (HA) of influenza virus mediates fusion between the viral envelope and the endosome membrane. The conformational change of the HA ectodomain is triggered by the acidic pH of the endosome lumen. An essential step of the conformational change is the formation of an extended coiled-coil motif exposing the hydrophobic fusion peptide toward the target membrane. The structures of the neutral-pH, non-fusion active conformation of the HA ectodomain and of a fragment of the ectodomain containing the coiled-coil motif are known. However, it is not known by which mechanism protonation triggers the conformational change of the stable neutral-pH conformation of the ectodomain. Here, recent studies on the stability of the HA ectodomain at neutral pH, the energetics of the conformational change toward the fusion-active state and of the unfolding of the HA ectodomain are summarised. A model for the early steps of the conformational change of the HA ectodomain is presented. The model implicates that protonation leads to a partial dissociation of the distal domains of the HA monomers that is driven by electrostatic repulsion. The opening of the ectodomain enables water to enter the ectodomain. The interaction of water with respective sequences originally shielded from contact with water drives the formation of the coiled-coil structure.  相似文献   

15.
The reovirus p10 fusion-associated small transmembrane (FAST) proteins are the smallest known membrane fusion proteins, and evolved specifically to mediate cell–cell, rather than virus–cell, membrane fusion. The 36–40-residue ectodomains of avian reovirus (ARV) and Nelson Bay reovirus (NBV) p10 contain an essential intramolecular disulfide bond required for both cell–cell fusion and lipid mixing between liposomes. To more clearly define the functional, biochemical and biophysical features of this novel fusion peptide, synthetic peptides representing the p10 ectodomains of ARV and NBV were analyzed by solution-state NMR spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy-based hydrophobicity analysis, and liposome binding and fusion assays. Results indicate that disulfide bond formation promotes exposure of hydrophobic residues, as indicated by bis-ANS binding and time-dependent peptide aggregation under aqueous conditions, implying the disulfide bond creates a small, geometrically constrained, cystine noose. Noose formation is required for peptide partitioning into liposome membranes and liposome lipid mixing, and electron microscopy revealed that liposome–liposome fusion occurs in the absence of liposome tubulation. In addition, p10 fusion peptide activity, but not membrane partitioning, is dependent on membrane cholesterol.  相似文献   

16.
To investigate the structural context of the fusion peptide region in human T-cell leukemia virus type 1 gp21, maltose-binding protein (MBP) was used as an N-terminal solubilization partner for the entire gp21 ectodomain (residues 313-445) and C-terminally truncated ectodomain fragments. The bacterial expression of the MBP/gp21 chimeras resulted in soluble trimers containing intramonomer disulfide bonds. Detergents blocked the proteolytic cleavage of fusion peptide residues in the MBP/gp21-(313-425) chimera, indicating that the fusion peptide is available for interaction with detergent despite the presence of an N-terminal MBP domain. Limited proteolysis experiments indicated that the transmembrane domain proximal sequence Thr(425)-Ala(439) protects fusion peptide residues from chymotrypsin. MBP/gp21 chimera stability therefore depends on a functional interaction between N-terminal and transmembrane domain proximal regions in a gp21 helical hairpin structure. In addition, thermal aggregation experiments indicated that the Thr(425)-Ser(436) sequence confers stability to the fusion peptide-containing MBP/gp21 chimeras. The functional role of the transmembrane domain proximal sequence was assessed by alanine-scanning mutagenesis of the full-length envelope glycoprotein, with 11 of 12 single alanine substitutions resulting in 1.5- to 4.5-fold enhancements in cell-cell fusion activity. By contrast, single alanine substitutions in MBP/gp21 did not significantly alter chimera stability, indicating that multiple residues within the transmembrane domain proximal region and the fusion peptide and adjacent glycine-rich segment contribute to stability, thereby mitigating the potential effects of the substitutions. The fusion-enhancing effects of the substitutions are therefore likely to be caused by alteration of the prefusion complex. Our observations suggest that the function of the transmembrane domain proximal sequence in the prefusion envelope glycoprotein is distinct from its role in stabilizing the fusion peptide region in the fusion-activated helical hairpin conformation of gp21.  相似文献   

17.
Recombinant analogs of spider dragline silk proteins 1F9 and 2E12 are characterized by numerous repeats consisting of hydrophobic poly-Ala blocks and Gly-rich sequences with a substantial number of positively charged amino acid residues which suggest a pronounced ability to interact with negatively charged phospholipid membranes. Actually both proteins displayed substantial binding affinity towards lipid vesicles formed of acidic lipids as measured by fluorescence correlation spectroscopy (FCS) using rhodamine-labeled conjugates of the proteins. Both proteins did not induce liposome leakage, fusion or breakdown, but were able to bring about liposome aggregation. 1F9 was more active in the induction of liposome aggregation compared to 2E12. Interestingly, 2E12 markedly decreased the rate of calcium-induced liposome fusion. Circular dichroism data showed that binding of the proteins to negatively charged phosphatidylserine liposomes provoked transition from the left-handed helix of polyproline II (PPII) type to β-structures and α-helices. The data suggested predominantly surface location of membrane bound proteins without significant perturbation of their hydrophobic core.  相似文献   

18.
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix.  相似文献   

19.
Ebola virus contains a single glycoprotein (GP) that is responsible for receptor binding and membrane fusion and is proteolytically cleaved into disulfide-linked GP1 and GP2 subunits. The GP2 subunit possesses a coiled-coil motif, which plays an important role in the oligomerization and fusion activity of other viral GPs. To determine the functional significance of the coiled-coil motif of GP2, we examined the effects of peptides corresponding to the coiled-coil motif of GP2 on the infectivity of a mutant vesicular stomatitis virus (lacking the receptor-binding/fusion protein) pseudotyped with the Ebola virus GP. A peptide corresponding to the C-terminal helix reduced the infectivity of the pseudotyped virus. We next introduced alanine substitutions into hydrophobic residues in the coiled-coil motif to identify residues important for GP function. None of the substitutions affected GP oligomerization, but some mutations, two in the N-terminal helix and all in the C-terminal helix, reduced the ability of GP to confer infectivity to the mutant vesicular stomatitis virus without affecting the transport of GP to the cell surface, its incorporation into virions, and the production of virus particles. These results indicate that the coiled-coil motif of GP2 plays an important role in facilitating the entry of Ebola virus into host cells and that peptides corresponding to this region could act as efficient antiviral agents.  相似文献   

20.
Kelly K Lee 《The EMBO journal》2010,29(7):1299-1311
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three‐dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo‐tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane‐centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of ‘leaky’ fusion to the observed prefusion structures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号