首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported an efficient proteomic approach to identify matrix metalloproteinase (MMP) substrates from complex protein mixture. Using the proteomic approach, apolipoprotein C-II (apoC-II), which is a cofactor of lipoprotein lipase (LPL) and a component of very-low density lipoprotein and chylomicron, has been identified as a putative MMP-14 substrate. Cleavage of apoC-II, with various MMPs, demonstrated that apoC-II is cleaved most efficiently by MMP-14, and also by MMP-7, among the tested MMPs. The 79-amino acid residue apoC-II was cleaved between Asn35 and Leu36 by MMP-14, and between Phe14 and Leu15 and between Asn35 and Leu36 by MMP-7. Cleavage of apoC-II by MMP-14 markedly decreased LPL activity and would thus impair hydrolysis of triglycerides in plasma and transfer of fatty acids to tissues. Our result suggests that cleavage of apoC-II by MMPs would be important for development of pathophysiological situations of apoC-II deficiency such as atherosclerosis.  相似文献   

2.
Park SM  Hwang IK  Kim SY  Lee SJ  Park KS  Lee ST 《Proteomics》2006,6(4):1192-1199
We previously showed that plasma gelsolin, a major component of the extracellular actin scavenging system, is an matrix metalloproteinase (MMP)-14 substrate. Here we confirmed that plasma gelsolin is cleaved by MMP-14 at the plasma level, and found that it was most efficiently digested by MMP-3 followed by MMP-2, MMP-1, MMP-14, and MMP-9, in that order. Plasma gelsolin (90 kDa) was cut into several fragments of 43-48 kDa by MMP-3. The MMP-3 cleavage sites in plasma gelsolin were determined by labeling the C termini generated by in-gel digestion with 50% H2 18O combined with peptide mass mapping, and sequencing of the N-terminal amino acids. Plasma gelsolin was cleaved at Asn416-Val417, Ser51-Met52, and Ala435-Gln436. Proteolytic cleavage by MMP-3 resulted in considerable loss of its actin filament-depolymerizing activity. This suggests that MMPs weaken the extracellular actin-scavenging system by cleaving plasma gelsolin and may, therefore, be involved in pathological conditions induced by extracellular actin, such as endothelial injury, respiratory distress syndrome, hepatic necrosis, and septic shock.  相似文献   

3.
Summary In man, apolipoprotein A-IV is characterized by a genetically determined polymorphism controlled by two codominant alleles. Two isoforms of this apolipoprotein, designated A-IV-1 and A-IV-2, can be identified by isoelectric focusing. Among 1000 healthy factory workers participating in an epidemiological study, A-IV-1 (genotype 1-1) was observed in 85%; A-IV-2 (genotype 2-2), in 0.5%; and A-IV-1 in combination with A-IV-2 (genotype 1–2), in 14%. In four nonrelated subjects, an apolipoprotein A-IV variant (A-IV-Münster), characterized by a slightly more basic isoelectric focusing behavior than A-IV-2, was detected in combination either with A-IV-1 or A-IV-2. Mendelian inheritance of this variant could be demonstrated.  相似文献   

4.
Apolipoprotein A-IV is a 46kDa glycoprotein that is synthesized by intestinal enterocytes and is incorporated into the surface of nascent chylomicrons. Considerable evidence suggests that apolipoprotein A-IV plays a role in intestinal lipid absorption and chylomicron assembly. We have proposed that polymorphisms that alter the interfacial behavior of apolipoprotein A-IV may modulate the physical properties and metabolic fate of plasma chylomicrons. Of the reported genetic polymorphisms of apolipoprotein A-IV, two, Q360H and T347S, are known to occur at high frequencies among the world populations. Biophysical studies have established that the Q360H isoprotein displays higher lipid affinity; conversely the T347S isoprotein is predicted to be less lipid avid. Recent studies have shown that the Q360H polymorphism is associated with increased postprandial hypertriglyceridemia, a reduced low-density lipoprotein response to dietary cholesterol in the setting of a moderate fat intake, an increased high-density lipoprotein response to changes in total dietary fat content, and lower body mass and adiposity; the T347S polymorphism appears to confer the opposite effects. Studies on the diet-gene interactions of other apolipoprotein A-IV alleles are needed, as are studies on the interactions between apolipoprotein A-IV alleles and other apolipoprotein polymorphisms.  相似文献   

5.
6.
7.
Dietary fat is an important mediator of atherosclerosis and obesity. Despite its importance in mediating metabolic disease, there is still much unknown about dietary fat absorption in the intestine and especially the detailed biological roles of intestinal apolipoproteins involved in that process. We were specifically interested in determining the physiological role of the intestinal apolipoprotein A-IV (A-IV) using A-IV knockout (KO) mice. A-IV is stimulated by fat absorption in the intestine and is secreted on nascent chylomicrons into intestinal lymph. We found that A-IV KO mice had reduced plasma triglyceride (TG) and cholesterol levels and that this hypolipidemia persisted on a high-fat diet. A-IV KO did not cause abnormal intestinal lipid absorption, food intake, or adiposity. Additionally, A-IV KO did not cause abnormal liver TG and cholesterol metabolism, as assessed by measuring hepatic lipid content, lipogenic and cholesterol synthetic gene expression, and in vivo VLDL secretion. Instead, A-IV KO resulted in the secretion of larger chylomicrons from the intestine into the lymph, and those chylomicrons were cleared from the plasma more slowly than wild-type chylomicrons. These data suggest that A-IV has a previously unknown role in mediating the metabolism of chylomicrons, and therefore may be important in regulating plasma lipid metabolism.  相似文献   

8.
The measurement of matrix metalloproteinase (MMP) activity in diseases like inflammation, oncogenesis, or atherosclerosis in vivo is highly desirable. Fine-tuned pyrimidine-2,4,6-triones (barbiturates) offer nonpeptidyl lead structures for developing imaging agents for specifically visualization of activated MMPs in vivo. The aim of this study was to modify a C-5-disubstituted barbiturate and thus design a highly affine, nonpeptidic, optical MMP inhibitor (MMPI)-ligand for imaging of activated MMPs in vivo. A convergent 10 step synthesis was developed, starting with a malonic ester and (4-bromophenoxy)benzene to generate 5-bromo-pyrimidine-2,4,6-trione as the key intermediate. To minimize the interactions between activated MMPs and the dye of the conjugate 6, a PEGylated piperazine derivative was used as a spacer and an azide as a protected amino function. After linking both building blocks, reducing the azide ( Staudinger reaction) and labeling with Cy 5.5, we obtained the nonhydroxamate MMP inhibitor 6 with high affinity (IC 50-value: 48 nM for MMP-2) measured in a fluorogenic assay using commercially available MMP-substrates and the purified enzyme. Zymography revealed an efficient blocking of enzyme activity of purified MMP-2 and MMP-9 and of MMP-containing cell supernatants (HT-1080), (A-673) using the PEGylated barbiturate 5. Fluorescence microscopy studies using a highly (A-673) and a moderate (HT-1080) MMP-2 secreting cell line showed efficient binding of the Cy 5.5 labeled tracer 6 to the MMP-2 positive cells while MMP-2 negative cells (MCF-7) did not bind. Therefore, this new barbiturate-based MMP-probe has a high affinity and specificity toward MMP-2 and -9 and is thus a promising candidate for sensitive MMP detection in vivo.  相似文献   

9.
N Saha 《Human heredity》1991,41(1):47-52
A total of 627 subjects comprising 455 Chinese, 127 Dravidian Indians and 45 Malays were investigated for serum Apo A-IV polymorphism. The frequency of Apo A-IV*2 was found to be significantly higher (p less than 0.001) in Indians (0.043) compared to that in the Chinese (0.010) and Malays (0.011). The frequency of A-IV*3 was found to be around 0.02 in all the ethnic groups. A low frequency of A-IV*4 (less than 0.01) was observed in the Chinese and Indians. The phenotypic distribution of Apo A-IV was at Hardy-Weinberg equilibrium in the three ethnic groups.  相似文献   

10.
The focus of this article is to review evidence that apolipoprotein A-IV (apo A-IV) acts as a satiety factor. Additionally, information regarding the general involvement of apo A-IV in the regulation of food intake and body weight is stated. Apo A-IV is a glycoprotein synthesized by the human intestine. In rodents, both the small intestine and liver secrete apo A-IV, but the small intestine is the major organ responsible for circulating apo A-IV. There is now solid evidence that the hypothalamus, especially the arcuate nucleus, is another active site of apo A-IV expression. Intestinal apo A-IV synthesis is markedly stimulated by fat absorption and does not appear to be mediated by the uptake or reesterification of fatty acids to form triglycerides. Rather, the local formation of chylomicrons acts as a signal for the induction of intestinal apo A-IV synthesis. Intestinal apo A-IV synthesis is also enhanced by a factor from the ileum, probably peptide tyrosine-tyrosine (PYY). The inhibition of food intake by apo A-IV is mediated centrally. The stimulation of intestinal synthesis and secretion of apo A-IV by lipid absorption are rapid; thus apo A-IV likely plays a role in the short-term regulation of food intake. Other evidence suggests that apo A-IV may also be involved in the long-term regulation of food intake and body weight, as it is regulated by both leptin and insulin. Chronic ingestion of a high-fat diet blunts the intestinal as well as the hypothalamic apo A-IV response to lipid feeding. It also suppresses apo A-IV gene expression in the hypothalamus. Whereas it is tempting to speculate that apo A-IV may play a role in diet-induced obesity, we believe the confirmation of such a proposal awaits further experimental evidence.  相似文献   

11.
WW domain-containing proteins are found in all eukaryotic cells and they are involved in the regulation of a wide variety of cellular functions. We recently identified the neuronal protein KIBRA as novel member of this family of signal transducers. In this report, we describe the identification of protein kinase C (PKC) zeta as a KIBRA-interacting protein. PKCzeta is known to play an important role in synaptic plasticity and memory formation but its specific targets are not well known. Our studies presented here revealed that KIBRA is a novel substrate for PKCzeta and suggest that PKCzeta phosphorylation may regulate the cellular function of KIBRA.  相似文献   

12.
Insulin-degrading enzyme (IDE) can degrade insulin and amyloid-β, peptides involved in diabetes and Alzheimer's disease, respectively. IDE selects its substrates based on size, charge, and flexibility. From these criteria, we predict that IDE can cleave and inactivate ubiquitin (Ub). Here, we show that IDE cleaves Ub in a biphasic manner, first, by rapidly removing the two C-terminal glycines (kcat = 2 s− 1) followed by a slow cleavage between residues 72 and 73 (kcat = 0.07 s−  1), thereby producing the inactive 1-74 fragment of Ub (Ub1-74) and 1-72 fragment of Ub (Ub1-72). IDE is a ubiquitously expressed cytosolic protein, where monomeric Ub is also present. Thus, Ub degradation by IDE should be regulated. IDE is known to bind the cytoplasmic intermediate filament protein nestin with high affinity. We found that nestin potently inhibits the cleavage of Ub by IDE. In addition, Ub1-72 has a markedly increased affinity for IDE (∼ 90-fold). Thus, the association of IDE with cellular regulators and product inhibition by Ub1-72 can prevent inadvertent proteolysis of cellular Ub by IDE. Ub is a highly stable protein. However, IDE instead prefers to degrade peptides with high intrinsic flexibility. Indeed, we demonstrate that IDE is exquisitely sensitive to Ub stability. Mutations that only mildly destabilize Ub (ΔΔG <  0.6 kcal/mol) render IDE hypersensitive to Ub with rate enhancements greater than 12-fold. The Ub-bound IDE structure and IDE mutants reveal that the interaction of the exosite with the N-terminus of Ub guides the unfolding of Ub, allowing its sequential cleavages. Together, our studies link the control of Ub clearance with IDE.  相似文献   

13.
Kallikrein 7 (hK7), a chymostatin-like serine protease, is overexpressed in pancreatic adenocarcinomas as well as other human cancers. Although it has been demonstrated to participate in normal desquamation by facilitating cell shedding at the skin surface, its role in human malignancies remains unclear. To investigate the ability of hK7 to degrade components of the extracellular matrix (ECM), recombinant hK7 was expressed and purified from cultured mammalian cells. Using a three-step chromatographic purification procedure, recombinant hK7 was obtained that displayed robust proteolytic activity against a fluorogenic peptide substrate following activation by thermolysin. We demonstrate that the active protease is able to cleave fibronectin in a time-dependent manner, but not laminin, using an in vitro degradation assay. These findings indicate that the aberrant expression and secretion of hK7 in human tumors may facilitate metastasis by directly degrading components of the extracellular matrix and may thus play an important role in tumorigenesis.  相似文献   

14.
A zymographic method for the assay of matrix metalloproteinases in substrate impregnated gels in multiwells has been developed for the analysis of a large number of samples at a time. Enzyme was copolymerized with 300 microliters of 10% acrylamide impregnated with gelatin substrate and incubated for 16 hr. The gels were stained with coomassie blue, destained with water and the intensity measured in a densitometer. This method was tested with pure bacterial collagenase and three different gelatinases purified from rat mammary gland. The characteristics of these enzymes such as cation dependence, inhibition and concentration dependence have been examined by this method.  相似文献   

15.
In our study, we characterized the substrate recognition properties of membrane type-1 matrix metalloproteinase (MT1-MMP; also known as MMP-14), a key enzyme in tumor cell invasion and metastasis. A panel of optimal peptide substrates for MT1-MMP was identified using substrate phage display. The substrates can be segregated into four groups based on their degree of selectivity for MT1-MMP. Substrates with poor selectivity for MT1-MMP are comprised predominately of the Pro-X-X- downward arrow-X(Hy) motif that is recognized by a number of MMPs. Highly selective substrates lack the characteristic Pro at the P(3) position; instead they contain an Arg at the P(4) position. This P(4) Arg is essential for efficient hydrolysis and for selectivity for MT1-MMP. Molecular modeling indicates that the selective substrates adopt a linear conformation that extends along the entire catalytic pocket of MT1-MMP, whereas non-selective substrates are kinked at the conserved P(3) Pro residue. Importantly, the selective substrates can be made non-selective by insertion of a proline kink at P(3), without significantly reducing overall k(cat)/K(m) values. Altogether the study provides a structural basis for selective and non-selective substrate recognition by MT1-MMP. The findings in this report are likely to explain several aspects of MT1-MMP biology.  相似文献   

16.
Apolipoprotein (apo) A-IV is an anorexigenic gastrointestinal peptide that is also synthesized in the hypothalamus. The goal of these experiments was to determine whether apo A-IV interacts with the central melanocortin (MC) system in the control of feeding. The third ventricular (i3vt) administration of a subthreshold dose of apo A-IV (0.5 microg) potentiated i3vt MC-induced (metallothionein-II, 0.03 nmol) suppression of 30-min feeding in Long-Evans rats. A subthreshold dose of the MC antagonist (SHU9119, 0.1 nmol, i3vt) completely attenuated the anorectic effect of i3vt apo A-IV (1.5 microg). The i3vt apo A-IV significantly elevated the expression of c-Fos in neurons of the paraventricular nucleus of the hypothalamus, but not in the arcuate nucleus or median eminence. In addition, c-Fos expression was not colocalized with proopiomelanocortin-positive neurons. These data support a synergistic interaction between apo A-IV and melanocortins that reduces food intake by acting downstream of the arcuate.  相似文献   

17.
Nucleoside transporter (NT) plays key roles in the physiology of nucleosides and the pharmacology of its analogues in mammals. We previously cloned Na+/nucleoside cotransporter CNT2 from mouse M5076 ovarian sarcoma cells, the peptide encoded by it differing from that by the previously reported mouse CNT2 in five substitutions, and observed that the transporter can take up cytidine, like CNT1 and CNT3. In the present study, we examined which of the two aforementioned CNT2 is the normal one, and whether or not cytidine is transported via the previously reported CNT2. The peptide encoded by CNT2 derived from mouse intestine, liver, spleen, and ovary was identical to that previously reported. The uptake of [3H]cytidine, but not [3H]thymidine, by Cos-7 cells transfected with CNT2 cDNA obtained from mouse intestine was much greater than that by mock cells, as in the case of [3H]uridine, a typical substrate of NT. [3H]Cytidine and [3H]uridine were taken up via CNT2, in temperature-, extracellular Na+-, and substrate concentration-dependent manners. The uptake of [3H]cytidine and [3H]uridine mediated by CNT2 was significantly inhibited by the variety of nucleosides used in this study, except for thymidine, and inhibition of the [3H]uridine uptake by cytidine was competitive. The [3H]uridine uptake via CNT2 was significantly decreased by the addition of cytarabin or gemcitabine, antimetabolites of cytidine analogue. These results indicated that the previously reported mouse CNT2 is the wild-type one, and cytidine is transported mediated by the same recognition site on the CNT2 with uridine, and furthermore, cytidine analogues may be substrates for the transporter.  相似文献   

18.
CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein βTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.  相似文献   

19.
The development of matrix metalloproteinase (MMP) inhibitors has often been frustrated by a lack of specificity and subsequent off-target effects. More recently, inhibitor design has considered secondary binding sites (exosites) to improve specificity. Small molecules and peptides have been developed that bind exosites in the catalytic (CAT) domain of MMP-13, the CAT or hemopexin-like (HPX) domain of MT1-MMP, and the collagen binding domain (CBD) of MMP-2 and MMP-9. Antibody-based approaches have resulted in selective inhibitors for MMP-9 and MT1-MMP that target CAT domain exosites. Triple-helical “mini-proteins” have taken advantage of collagen binding exosites, producing a family of novel probes. A variety of non-traditional approaches that incorporate exosite binding into the design process has yielded inhibitors with desirable selectivities within the MMP family.  相似文献   

20.
Roux-en-Y gastric bypass surgery (RYGBP) leads to improvements in satiety and obesity-related comorbidities. The mechanism(s) underlying these improvements are not known but may be revealed in part by discovery proteomics. Therefore, fasting plasma was collected from 12 subjects (mean BMI >45) during RYGBP and during a second procedure approximately 17 months later. Body weight, obesity-related comorbidities, and medication use were decreased after RYGBP. Mass spectrometry-based proteomic analysis was performed on a subset of seven samples using isobaric isotope-coded affinity tags (four plex iTRAQ). Initial proteomic analysis (n = 7) quantified and identified hundreds of plasma proteins. Manual inspection of the data revealed a 2.6 +/- 0.5-fold increase in apolipoprotein A-IV (apo A-IV, gene designation: APOA4), a approximately 46-kDa glycoprotein synthesized mainly in the bypassed small bowel and liver after RYGBP. The change in apo A-IV was significantly greater than other apolipoproteins. Immunoblot analysis of the full longitudinal sample set (n = 12) indicated even higher increases (8.3 +/- 0.2 fold) in apo A-IV. Thus iTRAQ may underestimate the changes in protein concentrations compared to western blotting of apo A-IV. Apo A-IV inhibits gastric emptying and serves as a satiety factor whose synthesis and secretion are increased by the ingestion of dietary fat. It also possesses anti-inflammatory and antiatherogenic properties. Based on these functions, we speculate changes in apo A-IV may contribute to weight loss as well as the improvements in inflammation and cardiovascular disease after RYGBP. In addition, the findings provide evidence validating the use of iTRAQ proteomics in discovery-based studies of post-RYGBP improvements in obesity-related medical comorbidities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号