首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human acidic fibroblast growth factor (FGF-1) is a powerful mitogen and angiogenic factor with an apparent melting temperature (Tm) in the physiological range. FGF-1 is an example of a protein that is regulated, in part, by stability-based mechanisms. For example, the low Tm of FGF-1 has been postulated to play an important role in the unusual endoplasmic reticulum-independent secretion of this growth factor. Despite the close relationship between function and stability, accurate thermodynamic parameters of unfolding for FGF-1 have been unavailable, presumably due to effects of irreversible thermal denaturation. Here we report the determination of thermodynamic parameters of unfolding (DeltaH, DeltaG, and DeltaCp) for FGF-1 using differential scanning calorimetry (DSC). The thermal denaturation is demonstrated to be two-state and reversible upon the addition of low concentrations of added guanidine hydrochloride (GuHCl). DeltaG values from the DSC studies are in excellent agreement with values from isothermal GuHCl denaturation monitored by fluorescence and circular dichroism (CD) spectroscopy. Furthermore, the results indicate that irreversible denaturation is closely associated with the formation of an unfolding intermediate. GuHCl appears to promote reversible two-state denaturation by initially preventing aggregation of this unfolding intermediate, and at subsequently higher concentrations, by preventing formation of the intermediate.  相似文献   

2.
3.
To find out the changes in the internal dynamics and function of proteins as a consequence of their binding interactions with guanidine hydrochloride (GdnHCl), laser flash photolysis and optical absorption methods have been used to study the dynamic events in the horse myoglobin–CO complex (MbCO) in the presence of subdenaturing concentrations of GdnHCl at pH 7, 22 °C. The rate coefficients for geminate rebinding and bimolecular rebinding (k on) were measured by laser photolysis of CO in MbCO, and the CO dissociation rate (k off) was determined by the CO replacement method using hexacyanoferrate ion or NO. Starting from the native-state condition, the values of k on and k off decrease by approximately 1.4 (±0.1)-fold in the presence of 0.1–0.3 M GdnHCl, and then increase at higher concentrations of the denaturant. This has been taken as evidence for internal motional constraints and increased stability of the protein in the subdenaturing region giving rise to gated entry of the photolyzed CO from the solvent. The rate for geminate rebinding does not show any decrease in the rate versus GdnHCl concentration plots. The values for the activation enthalpy for the CO dissociation reaction and the entropy loss relative to the native-state entropy, both measured as a function of GdnHCl concentration, indicate that the protein is indeed stabilized under subdenaturing conditions. Analyses of thermal unfolding transitions of myoglobin in the presence of different concentrations of GdnHCl indicate that the stability of this protein extracted from the linear free energy model is approximately 3–4 kcal mol−1 less than the true stability. The results indicate the appropriateness of the denaturant binding model for the analysis of GdnHCl-induced unfolding data, and provide a value of 7.9 kcal mol−1 as the true stability of the protein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
The reversibility of the unfolding-refolding transition of horse muscle phosphoglycerate kinase, induced by guanidine hydrochloride (Gdn X HCl), was studied using the regain of enzyme activity as a probe of the native structure. An irreversibility in the reactivation process was detected when the protein was incubated in a critical concentration of denaturant (0.7 +/- 0.1 M Gdn X HCl). This apparent irreversibility was observed for the unfolding process (N----D) as well as for the refolding process (D----N). The formation of the trough followed biphasic kinetics at 23 degrees C, the first phase obeying a first-order reaction corresponded to an isomerization of an intermediate; the second phase, protein-concentration-dependent, was suppressed by lowering the temperature to 4 degrees C. The structural properties of the inactive species were studied; all the beta structures were recovered, but about 29% of the helical structures remained unfolded, and two SH groups were buried. Simulated kinetics were compared with the experimental results and were used to extend the minimum folding scheme previously proposed from equilibrium and kinetic studies [Betton et al. (1984) Biochemistry 23, 6654-6661; Betton et al. (1985) Biochemistry 24, 4570-4577]. The intermediates trapped under these conditions were structured but devoid of catalytic activity. Taking into account the structural properties of these species, the nature of the interactions involved in their formation and stabilization is discussed.  相似文献   

6.
Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride.   总被引:1,自引:0,他引:1  
The reversible unfolding of α-lactalbumin by guanidine hydrochloride has been studied at 25.0 °C by means of ultraviolet circular dichroism measurements. The non-coincidence of the apparent transition curves obtained from the ellipticity changes at far (222 nm) and at near (270 nm and 296 nm) ultraviolet wave-lengths demonstrates the presence of at least one intermediate in the denaturation process. The aromatic residues which contribute to the Cotton effects at 270 nm and at 296 nm appear to be exposed to solvent in the first stage of a two-stage process, while the helical regions of the polypeptide chain appear to be destroyed in the second stage. Earlier work has demonstrated an acid transition between two compact forms of α-lactalbumin, a native (neutral pH) form and an acid form. Results presented here suggest that the acid form is produced as an intermediate in the first stage of total unfolding at neutral pH.Lysozyme and α-lactalbumin are known to have similar primary structures and are expected to have similar tertiary structures, but several differences in their properties have been described. The comparison of the unfolding transitions of α-lactalbumin and lysozyme provides a result compatible with similar tertiary structures, although the free energy of stabilization of the native state is 3 to 5 kcal/mol smaller for α-lactalbumin than for lysozyme. The pH dependence of the unfolding reaction can be described in terms of abnormal histidyl and carboxyl residues. The presence of a stable intermediate in the denaturation process may cause a difference in dynamic character in the native state between the two proteins and thus provide a reasonable interpretation for their known differences in chemical reactivity.  相似文献   

7.
The unfolding of the blue-copper protein azurin from Pseudomonas aeruginosa by guanidine hydrochloride, under nonreducing conditions, has been studied by fluorescence techniques and circular dichroism. The denaturation transition may be fitted by a simple two-state model. The total free energy change from the native to the unfolded state was 9.4 +/- 0.4 kcal.mol-1, while a lower value (6.4 +/- 0.4 kcal.mol-1) was obtained for the metal depleted enzyme (apo-azurin) suggesting that the copper atom plays an important stabilization role. Azurin and apo-azurin were practically unaffected by hydrostatic pressure up to 3000 bar. Site-directed mutagenesis has been used to destabilize the hydrophobic core of azurin. In particular either hydrophobic residue Ile7 or Phe110 has been substituted with a serine. The free energy change of unfolding by guanidinium hydrochloride, resulted to be 5.8 +/- 0.3 kcal.mol-1 and 4.8 +/- 0.3 kcal.mol-1 for Ile7Ser and Phe110Ser, respectively, showing that both mutants are much less stable than the wild-type protein. The mutated apoproteins could be reversible denatured even by high pressure, as demonstrated by steady-state fluorescence measurements. The change in volume associated to the pressure-induced unfolding was estimated to be -24 mL.mol-1 for Ile7Ser and -55 mL.mol-1 for Phe110Ser. These results show that the tight packing of the hydrophobic residues that characterize the inner structure of azurin is fundamental for the protein stability. This suggests that the proper assembly of the hydrophobic core is one of the earliest and most crucial event in the folding process, bearing important implication for de novo design of proteins.  相似文献   

8.
The unfolding-refolding transition of horse muscle phosphoglycerate kinase induced by guanidine hydrochloride was studied under equilibrium conditions using four different signals: fluorescence intensity at 336 nm, UV difference absorbance at 286 and 292 nm, ellipticity at 220 nm, and enzyme activity. From the following arguments, we found that the process deviates from a two-state model and intermediates are significantly populated even at equilibrium: (1) the noncoincidence of the transition curves and (2) the asymmetry of the transition curve obtained from CD measurements. From these different data and the thermodynamic analysis, it was suggested that the two domains of the horse muscle phosphoglycerate kinase refold independently of one another with different equilibrium constants, the most favorable constant referring to the folding of the C-terminal domain which contains all tryptophans.  相似文献   

9.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

10.
We have studied the regulation of the lambda cII gene in vivo using cloned lambda fragments. Lambda N protein stimulated cII expression. Surprisingly, although very high cII protein levels were detected by gel electrophoresis, little cII protein activity, measured as stimulation of the lambda pI and pE promoters, was observed. The half-life of cII protein depended critically on its initial level. At low concentrations its half-life was as short as 1.5 min, whereas at high cII protein levels, it could be as long as 22 min. The Escherichia coli mutant ER437 directs lambda towards lysogeny; cII protein was more stable in this strain than in the wild type. On the other hand, although cyclic AMP is required for efficient lysogeny, it did not appear to influence the synthesis, stability, or activity of cII protein.  相似文献   

11.
T Y Tsong 《Biochemistry》1975,14(7):1542-1547
Previous work has shown that at neutral pH ferricytochrome c (horse heart) retains certain residual structures in concentrated solutions of urea or guanidine hydrochloride (Tsong, T. Y. (1974), J. Biol. Chem. 249, 1988). Present studies reveal that cooperative unfolding of these residual structures can be achieved by acidification of the protein to pH 4 in 9 M urea but can only be partially achieved in a 6 M guanidine hydrochloride solution. The evidence that the residual structures unfold in 9 M urea upon acidification is twofold. (1) Further uncoupling of the Trp-59-heme interaction occurs; this is reflected in the intensification of the tryptophan fluorescence from 55 to 90 percent relative to that of free tryptophan in the same solvent. (2) The intrinsic viscosity of the protein solution increases from 15.0 to 21 ml/g. The acidification also induces a spin-state transformation of the heme group at pH 5 both in urea and in guanidine hydrochloride. Acidic titration of the protein in urea and guanidine hydrochloride indicates that the unfolding involves the absorption of a single proton. However, the kinetics of the spin-state transformation are triphasic. These results suggest that the displacement of the ligand His-18 by a solvent molecule and the subsequent disintegration of the residual structures are complex processes and involve at least three kinetic steps. The ineffectiveness of guanidine hydrochloride as a denaturant for ferricytochrome c is shown to be due to the presence of the high concentration of Cl minus which can stabilize certain elements of the protein structure.  相似文献   

12.
G R Parr  G G Hammes 《Biochemistry》1975,14(8):1600-1605
The denaturation of rabbit skeletal muscle phosphofructokinase by guanidine hydrochloride has been studied using fluorescence, light scattering, and enzyme activity measurements. The transition from fully active tetramer (0.1 M potassium phosphate (pH 8.0) at 10 and 23 degrees) to unfolded polypeptide chains occurs in two phases as measured by changes in the fluorescence spectrum and light scattering of the protein: dissociation to monomers at low guanidine hydrochloride concentrations (similar to 0.8 M) followed by an unfolding of the polypeptide chains, which presumably results in a random coil state, at high concentrations of denaturant (greater than 3.5 M). The initial transition can be further divided into two distinct stages. The native enzyme is rapidly dissociated to inactive monomers which then undergo a much slower conformational change that alters the fluorescence spectrum of the protein. The dissociation is complete within 2 min and is reversible, but the conformational change requires about 2 hr for completion and is not reversible under a variety of conditions, including the presence of substrates and allosteric effectors. The conformationally altered protomer reaggregates to form a precipitate at 23 degrees, but is stable below 10 degrees. The second major phase of the denaturation is fully reversible. A simple mechanism is proposed to account for the results, and its implications for the corresponding renaturation process are discussed.  相似文献   

13.
Reversible unfolding of ovomucoid by guanidine hydrochloride, as followed by viscosity and difference-spectral measurements at 25°C, pH6, occurred in two distinct steps involving at least three major conformational states, namely the native, intermediate and completely denatured states, occurring respectively in 60mm-sodium phosphate buffer, 3.5m-guanidine hydrochloride and 6m-guanidine hydrochloride. The overall native conformation of ovomucoid, as indicated by its intrinsic viscosity (5.24ml/g) and gel-filtration behaviour, differs significantly from that of a typical globular protein. Exposures of tyrosine residues in native ovomucoid measured by difference spectroscopy following perturbation with glycerol, ethylene glycol and dimethyl sulphoxide were, respectively, 0.42, 0.56 and 0.57. Of the exposed phenolic groups only one titrated normally (pKint., 9.91, electrostatic-interaction factor, w, 0.04). Results on difference spectra, solvent perturbation, phenolic titration and intrinsic viscosity (7.4ml/g) taken together showed that, although ovomucoid in 3.5m-guanidine hydrochloride was significantly unfolded, it retained a degree of native structure, removable with 6m-guanidine hydrochloride. In the latter, all the six tyrosine residues were available for titration, and the intrinsic viscosity of ovomucoid increased to 9.4ml/g. Furthermore, the characteristic fine structures in circular-dichrosim spectra of ovomucoid, associated with the elements of native structure, were abolished in 6m-guanidine hydrochloride, suggesting that the completely denatured state is structureless and presumably behaves as a cross-linked random coil. The latter state has been shown by analysis of the results on guanidine hydrochloride-dependence of the transition, intermediatedenatured, to be less stable than the intermediate state under native conditions by about 46kJ/mol at 25°C. Attempts have been made to interpret the above results in the light of available information on the amino acid sequence of ovomucoid.  相似文献   

14.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

15.
Thermal unfolding of chicken pancreatic polypeptide at two different concentrations was studied at various pH values. The thermal stability was higher at higher protein concentrations. The transition temperatures at two different protein concentrations changed with pH in parallel and decreased by about 30 degrees C on lowering pH from 5 to 2. The results on the thermal unfolding were analyzed by assuming that the dimerization constant is independent of pH, that the thermal unfolding occurs only after the pancreatic polypeptide dimers dissociated into the monomers, and that one ionizable group participates in the acid unfolding of the monomer. The free energy change for the unfolding of the pancreatic polypeptide monomer was estimated to be 1.4 kcal/mol. The unfolding of pancreatic polypeptide by guanidine hydrochloride at pH 6.0 and 25 degrees C was also studied. The stability to guanidine hydrochloride was higher at higher protein concentrations.  相似文献   

16.
The refolding course and intermediate of guanidine hydrochloride (GuHCl)-denatured arginine kinase (AK) were studied in terms of enzymatic activity, intrinsic fluorescence, 1-anilino-8-naphthalenesulfonte (ANS) fluorescence, and far-UV circular dichroism (CD). During AK refolding, the fluorescence intensity increased with a significantly blue shift of the emission maximum. The molar ellipticity of CD increased to close to that of native AK, as compared with the fully unfolded AK. In the AK refolding process, 2 refolding intermediates were observed at the concentration ranges of 0.8-1.0 mol/L and 0.3-0.5 mol GuHCl/L. The peak position of the fluorescence emission and the secondary structure of these conformation states remained roughly unchanged. The tryptophan fluorescence intensity increased a little. However, the ANS fluorescence intensity significantly increased, as compared with both the native and the fully unfolded states. The first refolding intermediate at the range of 0.8-1.0 mol GuHCl/L concentration represented a typical "pre-molten globule state structure" with inactivity. The second one, at the range of 0.3-0.5 mol GuHCl/L concentration, shared many structural characteristics of native AK, including its secondary and tertiary structure, and regained its catalytic function, although its activity was lower than that of native AK. The present results suggest that during the refolding of GuHCl-denatured AK there are at least 2 refolding intermediates; as well, the results provide direct evidence for the hierarchical mechanism of protein folding.  相似文献   

17.
18.
The selective solubilization of apo-very low density lipoprotein (apo VLDL) of hen's egg yolk was achieved from intact VLDL with guanidine hydrochloride (GuHCl) or urea. The amount of extracted apoVLDL increased with increase of the reagent concentration. GuHCl was more effective than urea and more than 60% of apoVLDL was solubilized with 6 M GuHCl. Previously we reported the presence of five major apoVLDL components, GPI, ApoA, GPII, ApoB, and ApoC in order of size, and found that GPI and GPII were periodic acid-Schiff staining positive, while ApoA, ApoB, and ApoC were negative. With GuHCl or urea, GPI and GPII were easily solubilized, while ApoA and ApoB could not be extracted. The solubilized apoVLDL was rich in carbohydrates, especially sialic acid, compared with the residual apoVLDL. However, only slight differences in amino acid compositon were found between the soluble and the residual apoVLDL. After the partial removal of apoVLDL with GuHCl or urea, VLDL retained its particulate nature, and no destruction of the lipid core was observed. These results were interpreted as indicating that the release of apoVLDL with GuHCl or urea occurred from the surface of the VLDL particle and that the selectively solubilized apoVLDL fractions, such as GPI and GPII, were weakly bound to lipids on the surface of VLDL, while ApoA and ApoB were tightly associated with the VLDL particle.  相似文献   

19.
20.
The product of the P gene of bacteriophage lambda was isolated from heat-induced lambda-lysogenic Escherichia coli cells. It was found to bind to DNA, to be devoid of nuclease activity acting on double-stranded lambda DNA and of nicking/closing activity. Initiation of lambda DNA replication promoted by the P-gene product in a complementation assay in vitro was sensitive to rifampicin. Sedimentation analysis of the products and their hybridization to separated lambda DNA strands indicate that lambda DNA was formed in a reaction similar to ring-to-ring replication in vivo. The reaction was symmetric from the beginning, i.e. both lambda DNA strands were copied without delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号