首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have purified rabbit globin mRNA using oligo(dT)-cellulose and sucrose gradient centrifugation. Both α- and β-globulin mRNA molecules behave heterogeneously with respect to their elution properties during chromatography on oligo(dT)-cellulose. Those fractions eluted at the lowest ionic strength are most active in directing cell-free globin biosynthesis. By making use of hybridization with synthetic [3H]DNA complementary to globin mRNA, we have shown that this technique can be used to quantitate the extent of mRNA purification. Thus, globin mRNA is approximately 90-fold purified from reticulocyte polysomal RNA and originally constituted slightly more than 1% of the polysomal RNA. Since more than 98% of the globin mRNA sequences are bound to oligo(dT)-cellulose, we suggest that most polysomal globin mRNAs contain a poly (A)-rich region and that this region is not of uniform length nor preponderately associated with either the α- or β-globin mRNAs. In addition, we observe that the 9S globin mRNA most resistant to dissociation from oligo (dT)-cellulose is most active in directing globin biosynthesis.  相似文献   

2.
The poly(A) tail present at the 3' end of most eukaryotic mRNAs can play a critical role in message translation and stability. Therefore, identifying alterations in poly(A) tail length can yield important insights into an mRNA's function and subsequent physiological impact. Here, we present three methods for assaying polyadenylation of a specific mRNA in the context of total cellular RNA. The first method described, oligo(dT)/RNase H-Northern analysis, is the classic labor-intensive assay for polyadenylation and is included for historical reference and as a potential experimental control for the poly(A) test (PAT) assays described subsequently. The PAT methods-rapid amplification of cDNA ends-PAT (RACE-PAT), and ligase-mediated PAT (LM-PAT)-are polymerase chain reaction-driven assays that allow speed, sensitivity, and length quantitation. The PAT assays can be conducted in a single day and can readily detect the poly(A) status of an mRNA present in subnanogram quantities of total cellular RNA.  相似文献   

3.
4.
Bacterial messenger RNA (mRNA) is not coherently polyadenylated, whereas mRNA of Eukarya can be separated from stable RNAs by virtue of polyadenylated 3′-termini. We have developed a method to isolate Escherichia coli mRNA by polyadenylating it in crude cell extracts with E. coli poly(A) polymerase I and purifying it by oligo(dT) chromatography. Differences in lacZRNA levels were similar with purified mRNA and total RNA in dot blot hydridizations for cultures grown with or without gratuitous induction of the lactose operon. More broadly, changes in gene expression upon induction were similar when cDNAs primed from mRNA or total RNA with random hexanucleotides were hydridized to DNA microarrays for the E. coli genome. Comparable signal intensities were obtained with only 1% as much oligo(dT)-purified mRNA as total RNA, and hence in vitro poly(A) tailing appears to be selective for mRNA. These and additional studies of genome-wide expression with DNA microarrays provide evidence that in vitro poly(A) tailing works universally for E. coli mRNAs.  相似文献   

5.
6.
Bacterial messenger RNA (mRNA) is not coherently polyadenylated, whereas mRNA of Eukarya can be separated from stable RNAs by virtue of polyadenylated 3'-termini. We have developed a method to isolate Escherichia coli mRNA by polyadenylating it in crude cell extracts with E. coli poly(A) polymerase I and purifying it by oligo(dT) chromatography. Differences in lacZRNA levels were similar with purified mRNA and total RNA in dot blot hydridizations for cultures grown with or without gratuitous induction of the lactose operon. More broadly, changes in gene expression upon induction were similar when cDNAs primed from mRNA or total RNA with random hexanucleotides were hydridized to DNA microarrays for the E. coli genome. Comparable signal intensities were obtained with only 1% as much oligo(dT)-purified mRNA as total RNA, and hence in vitro poly(A) tailing appears to be selective for mRNA. These and additional studies of genome-wide expression with DNA microarrays provide evidence that in vitro poly(A) tailing works universally for E. coli mRNAs.  相似文献   

7.
8.
9.
L Gedamu  K Iatrou  G H Dixon 《Cell》1977,10(3):443-451
Poly(A)+ protamine mRNA was isolated from trout testis cells in a very pure form, and artificial poly(A)- protamine mRNA molecules were derived from it by enzymatic deadenylation with RNAase H from calf thymus after hybridization with oligo(dT). The deadenylated protamine mRNA was found to be active in a wheat germ cell-free system and yielded a labeled product which co-migrated with authentic protamine. These deadenylated mRNA molecules were subsequently used as markers on denaturing polyacrylamide gels to identify and allow the purification of the poly(A)- protamine components known to exist in vivo in the total cellular poly(A)- RNA. RNA species of molecular weights similar to the enzymatically deadenylated subcomponents of protamine mRNA were observed in the natural poly(A)-RNA population of the testis cells. These naturally occurring poly(A)- protamine mRNAs were isolated by preparative gel electrophoresis and further characterized by 3H-poly(U) hybridization assay, by hybridization to complementary DNA made against highly purified poly(A)+ protamine mRNA, and by their ability to direct protamine synthesis in a cell-free system.  相似文献   

10.
Bacteriophage T7 mRNA is polyadenylated   总被引:1,自引:0,他引:1  
  相似文献   

11.
The expression of the mRNA for mouse testicular lactate dehydrogenase (LDH-X) was examined by RNA:cDNA hybridization in situ in the testis and by Northern analyses of meiotic and postmeiotic spermatogenic cell populations. Silver grains accumulated in cells inside the second layer from the periphery of the seminiferous tubule, confirming previous findings that LDH-X mRNA first appears in the spermatocyte and continues to accumulate until the late spermatid stage. Northern analyses showed that meiotic and postmeiotic cells contained 1.2 and 1.3 kb classes of hybridizing mRNA, respectively. RNase H digestion of oligo (dT)-hybridized RNA and poly(U)-Sepharose column chromatography with differential elution by formamide revealed that the difference in size of the two classes of mRNAs was due to the poly(A) tail length of the LDH-X mRNA. When the distribution of the LDH-X mRNA was examined across polysome gradients, both mRNAs were partially associated with polysomes. These results suggest that the changes in the polyadenylation of LDH-X mRNA were associated with the meiotic division during spermatogenesis in the mouse. They raise the possibility that the stable accumulation of the LDH-X mRNAs in the postmeiotic cells is enhanced by poly(A) tails of increased length.  相似文献   

12.
Nucleocytoplasmic transport of mRNA is essential for eukaryotic gene expression. However, how mRNA is exported from the nucleus is mostly unknown. To elucidate the mechanisms of mRNA transport, we took a genetic approach to identify genes, the products of which play a role in that process. From about 1000 temperature -sensitive (ts- or cs-) mutants, we identified five ts- mutants that are defective in poly(A)+ RNA transport by using a situ hybridization with an oligo(dT)50 as a probe. These mutants accumulate poly(A)+ RNA in the nuclei when shifted to a nonpermissive temperature. All five mutations are tightly linked to the ts- growth defects, are recessive, and fall into four different groups designated as ptr 1-4 (poly(A)+ RNA transport). Interestingly, each group of mutants has a differential localization pattern of poly(A)+ RNA in the nuclei at the nonpermissive temperature, suggesting that they have defects at different steps of the mRNA transport pathway. Localization of a nucleoplasmin-green fluorescent protein fusion suggests that ptr2 and ptr3 have defects also in nuclear protein import. Among the isolated mutants, only ptr2 showed a defect in pre-mRNA splicing. We cloned the ptr2+ and ptr3+ genes and found that they encode Schizosaccharomyces pombe homologues of the mammalian RCC1, a guanine nucleotide exchange factor for RAN/TC4, and the ubiquitin-activating enzyme E1 involved in ubiquitin conjugation, respectively. The ptr3+ gene is essential for cell viability, and Ptr3p tagged with green fluorescent protein was localized in both the nucleus and the cytoplasm. This is the first report suggesting that the ubiquitin system plays a role in mRNA export.  相似文献   

13.
14.
To identify genes whose products play potential roles in the nucleocytoplasmic export of messenger RNA, we isolated temperature-sensitive strains of Saccharomyces cerevisiae and examined them by fluorescent in situ hybridization. With the use of a digoxigen-tagged oligo-(dT)50 probe, we identified those that showed nuclear accumulation of poly(A)+ RNA when cells were shifted to the nonpermissive temperature. We describe here the properties of yeast strains bearing the rat3-1 mutation (RAT-ribonucleic acid trafficking) and the cloning of the RAT3 gene. When cultured at the permissive temperature of 23 degrees C, fewer than 10% of cells carrying the rat3-1 allele showed nuclear accumulation of poly(A)+ RNA, whereas approximately 70% showed nuclear accumulation of poly(A)+ RNA, whereas approximately 70% showed nuclear accumulation of poly(A)+ RNA after a shift to 37 degrees C for 4 h. In wild-type cells, nuclear pore complexes (NPCs) are distributed relatively evenly around the nuclear envelope. Both indirect immunofluorescence analysis and electron microscopy of rat3-1 cells indicated that NPCs were clustered into one or a few regions of the NE in mutant cells. Similar NPC clustering was seen in mutant cells cultured at temperatures between 15 degrees C and 37 degrees C. The RAT3 gene encodes an 1157-amino acid protein without similarity to other known proteins. It is essential for growth only at 37 degrees C. Cells carrying a disruption of the RAT3 gene were very similar to cells carrying the original rat3-1 mutation; they showed temperature-dependent nuclear accumulation of poly(A)+ RNA and exhibited constitutive clustering of NPCs. Epitope tagging of Rat3p demonstrated that it is located at the nuclear periphery and co-localizes with nuclear pore proteins recognized by the RL1 monoclonal antibody. We refer to this nucleoporin as Rat3p/Nup133p.  相似文献   

15.
Quantitation of mRNA content in samples of total cellular RNA is required for the analysis of Northern blot hybridization to estimate the relative level of specific gene expression. Commonly used methods based on UV absorbance and dye staining measure only total RNA, and mRNA normalization by probing for mRNA levels of housekeeping genes, such as β-actin and glyceraldehyde-3-phosphate dehydrogenase, assumes a constant level of their expression, which, in fact, may vary as a function of cell proliferation and differentiation. We describe here a nonradioactive, slot-blotting method for quantifying eukaryotic mRNA levels using a biotinylated oligo(dT) probe, which hybridizes directly to the 3′-polyadenylated sequence of eukaryotic mRNAs. The method provides a more accurate estimation of mRNA content in total RNA samples and should be applicable for quantitative Northern analysis.  相似文献   

16.
Quantitation of mRNA immobilized on nitrocellulose filters is an essential aspect of some studies in molecular biology. Hybridization of oligo(dT)18 to the poly(A) tails of mRNA can be used to measure filter-bound mRNA and thus provides a basis for comparing abundance of specific mRNAs. Hybridization rate of 32P-labeled oligo(dT)18 in 0.75 M NaCl, 75 mM sodium citrate, pH 7 (5 × SSC) to immobilized RNA was maximal at 25°C. Filters were fully hybridized under these conditions within 1 hr when the oligo(dT)18 concentration was 10 pmol/ml or higher. Salt dependence of the dissociation temperature (Td) of oligo(dT)18:RNA duplex on filters was described by the equation Td = 42 − 20log10[molar Na+] (°C). With stringent washing of the duplex (four 5-min washes in 2 × SSC at room temperature), oligo(dT)18 gave no signal with plasmid DNA, rRNA, or tRNA. We have found that olig(dT)18 can be used to normalize signal strengths rapidly and conveniently from total or oligo(dT)-selected eukaryotic RNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号