首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site of change in pulmonary vascular resistance (PVR) after surfactant displacement with the detergent diocytl sodium sulfosuccinate (OT) was studied in the isolated canine left lower lobe preparation. Changes in PVR were assessed using the arterial and venous occlusion technique and the vascular pressure-flow relationship. Changes in alveolar surface tension were confirmed from measurements of pulmonary compliance as well as from measurements of surface tension of extracts from lung homogenates. After surfactant depletion (the perfusion rate constant) the total pressure gradient (delta PT) across the lobe increased from 13.4 +/- 1 to 17.1 +/- 0.8 mmHg. This increase in delta PT was associated with a significant increase in the arterial and venous gradients (3.7 +/- 0.3 to 4.9 +/- 0.4 and 5.7 +/- 0.5 to 9.4 +/- 0.6 mmHg, respectively) and a decrease in middle pressure gradient (4.1 +/- 0.8 to 2.9 +/- 0.6 mmHg). The vascular pressure-flow relationship supported these findings and showed that the mean slope increased by 52% (P less than 0.05), whereas the pressure intercept decreased slightly but not significantly (3.7 +/- 0.7 to 3.2 +/- 0.8 mmHg). These results suggest that the resistance of arteries and veins increases, whereas the resistance of the middle segment decreases after surfactant depletion. These effects were apparently due to surface tension that acts directly on the capillary wall. Direct visualization of subpleural capillaries supported the notion that capillaries become distended and recruited as alveolar surface tension increases. In the normal lung (perfused at constant-flow rate) changes in alveolar pressure (Palv) were transmitted fully to the capillaries as suggested by equal changes in pulmonary arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pulmonary hemodynamics and lung water content were evaluated in open-chest dogs during splanchnic arterial occlusion (SAO) shock. Mean pulmonary arterial pressure [Ppa = 13.0 +/- 0.6 (SE) mmHg] and pulmonary venous pressure (4.1 +/- 0.2 mmHg) were measured by direct cannulation and the capillary pressure (Ppc = 9.0 +/- 0.6 mmHg) estimated by the double-occlusion technique. SAO shock did not produce a significant change in Ppa or Ppc despite a 90% decrease in cardiac output. An 18-fold increase in pulmonary vascular resistance occurred, and most of this increase (70%) was on the venous side of the circulation. No differences in lung water content between shocked and sham-operated dogs were observed. The effect of SAO shock was further evaluated in the isolated canine left lower lobe (LLL) perfused at constant flow and outflow pressure. The addition of venous blood from shock dogs to the LLL perfusion circuit caused a transient (10-15 min) increase in LLL arterial pressure (51%) that could be reversed rapidly with papaverine. In this preparation, shock blood produced either a predominantly arterioconstriction or a predominantly venoconstriction. These results indicate that both arterial and venous vasoactive agents are released during SAO shock. The consistently observed venoconstriction in the intact shocked lung suggests that other factors, in addition to circulating vasoactive agents, contribute to the pulmonary hemodynamic response of the open-chest shocked dog.  相似文献   

3.
We investigated the effects of hypoxic ventilation on the pulmonary arterial pressure- (P) flow (Q) relationship in an intact canine preparation. Mean pulmonary P-Q coordinates were obtained during hypoxic ventilation and during ventilation with 100% O2 at normal and at increased left atrial pressure. Specifically, we tested the hypothesis that, over a wide range, changes in left atrial pressure would alter the effects of hypoxic ventilation on pulmonary P-Q characteristics. Seven dogs were studied. When left atrial pressure was normal (5 mmHg), the mean value of the extrapolated intercept (PI) of the linear P-Q relationship was 10.9 mmHg and the slope (incremental vascular resistance, IR) of the P-Q relationship was 2.2 mmHg.l-1.min. Hypoxic ventilation increased PI to 18 mmHg (P less than 0.01) but did not affect IR. Subsequently, during ventilation with 100% O2, when left atrial pressure was increased to 14 mmHg by inflation of left atrial balloon, PI increased to 18 mmHg. IR was 1.6 mmHg.l-1.min. Again, hypoxic ventilation caused an isolated change in PI. Hypoxia increased PI from 18 to 28 mmHg (P less than 0.01). As in the condition of normal left atrial pressure, hypoxic ventilation did not affect IR. We conclude that, in an anesthetized intact canine preparation, hypoxic ventilation causes an isolated increase in the extrapolated pressure intercept of the pulmonary P-Q relationship. Furthermore the effects of hypoxic ventilation on pulmonary P-Q characteristics are not affected by the resting left atrial pressure.  相似文献   

4.
Postobstructive pulmonary vasculopathy, produced by chronic ligation of one pulmonary artery, markedly increases bronchial blood flow. Previously, using arterial and venous occlusion, we determined that bronchial collaterals enter the pulmonary circuit at the distal end of the arterial segment. In this study, we tested the hypothesis that pressure in bronchial collaterals (Pbr) closely approximates that at the downstream end of the arterial segment (Pao). We pump perfused [111 +/- 10 (SE) ml/min] left lower lobes of seven open-chest live dogs 3-15 mo after ligation of the left main pulmonary artery. Bronchial blood flow was 122 +/- 16 ml/min. We measured pulmonary arterial and venous pressures and, by arterial and venous occlusion, respectively, Pao and the pressure at the upstream end of the venous segment (Pvo). Pbr was obtained by micropuncture of 34 pleural surface bronchial vessels 201 +/- 16 microns in diameter. We found that Pbr (14.4 +/- 1.0 mmHg) was similar to Pao (15.0 +/- 0.8 mmHg) but differed significantly (P < 0.01) from Pvo (11.3 +/- 0.5 mmHg). In addition, Pbr was independent of systemic arterial pressure and bronchial vessel diameter. Light and electron microscopy revealed that, in the lobes with the ligated pulmonary artery, the new bronchial collaterals entered the thickened pleura from the parenchyma via either bronchovascular bundles or interlobular septa and had sparsely muscularized walls. We conclude that, in postobstructive pulmonary vasculopathy, bronchial collateral pressure measured by micropuncture is very close to the pressure in precapillary pulmonary arteries and that most of the pressure drop in the bronchial collaterals occurs in vessels > 350 microns in diameter.  相似文献   

5.
Pressure in the compliant middle segment of the pulmonary vascular bed (PM), as determined by arterial occlusion, was compared with pressure at the filtration site (effective filtration pressure, EFP), determined by the isofiltration technique, at very high (7-10 times normal) pulmonary flow in six in situ perfused canine left upper lobes. At these flow rates inflow and left atrial pressures averaged 41.9 +/- 1.3 and 2.5 +/- 0.5 (SE) mmHg, respectively. PM was 30.9 +/- 1.6 mmHg, and EFP was 32.3 +/- 1.9 mmHg with no significant difference between the two measurements by paired t test. The results indicate that the arterial occlusion technique yields a pressure that is equivalent to EFP even during very high pulmonary blood flow where the longitudinal distribution of resistance is quite different from that obtained during normal flow.  相似文献   

6.
Utilizing the arterial and venous occlusion technique, the effects of lung inflation and deflation on the resistance of alveolar and extraalveolar vessels were measured in the dog in an isolated left lower lobe preparation. The lobe was inflated and deflated slowly (45 s) at constant speed. Two volumes at equal alveolar pressure (Palv = 9.9 +/- 0.6 mmHg) and two pressures (13.8 +/- 0.8 mmHg, inflation; 4.8 +/- 0.5 mmHg, deflation) at equal volumes during inflation and deflation were studied. The total vascular pressure drop was divided into three segments: arterial (delta Pa), middle (delta Pm), and venous (delta Pv). During inflation and deflation the changes in pulmonary arterial pressure were primarily due to changes in the resistance of the alveolar vessels. At equal Palv (9.9 mmHg), delta Pm was 10.3 +/- 1.2 mmHg during deflation compared with 6.8 +/- 1.1 mmHg during inflation. At equal lung volume, delta Pm was 10.2 +/- 1.5 mmHg during inflation (Palv = 13.8 mmHg) and 5.0 +/- 0.7 mmHg during deflation (Palv = 4.8 mmHg). These measurements suggest that the alveolar pressure was transmitted more effectively to the alveolar vessels during deflation due to a lower alveolar surface tension. It was estimated that at midlung volume, the perimicrovascular pressure was 3.5-3.8 mmHg greater during deflation than during inflation.  相似文献   

7.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

8.
We used the in situ blood-perfused left lower lobe preparation of the dog to examine the effect of hydrostatic and permeability edema on the slope and intercept of the vascular pressure-flow (P/Q) relationship and on the longitudinal distribution of vascular resistance with the arterial and venous occlusion technique. Hydrostatic edema (HE) was induced by raising the venous pressure, and permeability edema (PE) was induced with alpha-naphthylthiourea. When the hematocrit (Hct) of the perfusate was kept normal (approximately 40%), HE had no significant effect on either the slope or the intercept of the P/Q relationship or on the distribution of vascular resistance. PE caused a small increase in the intercept of the P/Q relationship and a small rise in the resistance of the vessels in the middle segment. In another series of HE experiments in which Hct was allowed to increase during edema formation, there was a marked increase in vascular resistance. We conclude that edema per se does not increase vascular resistance significantly and that the increases in vascular resistance which were observed previously by other investigators in the isolated lungs may be due to increases in blood hematocrit.  相似文献   

9.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

10.
Systemic to pulmonary flow from bronchial circulation, important in perfusing potentially ischemic regions distal to pulmonary vascular obstructions, depends on driving pressure between an upstream site in intrathoracic systemic arterial network and pulmonary vascular bed. The reported increase of pulmonary infarctions in heart failure may be due to a reduction of this driving pressure. We measured upstream element for driving pressure for systemic to pulmonary flow from bronchial circulation by raising pulmonary venous pressure (Ppv) until the systemic to pulmonary flow from bronchial circulation ceased. We assumed that this was the same as upstream pressure when there was flow. Systemic to pulmonary flow from bronchial circulation was measured in left lower lobes (LLL) of 21 anesthetized open-chest dogs from volume of blood that overflowed from pump-perfused (90-110 ml/min) pulmonary vascular circuit of LLL and was corrected by any changes of LLL fluid volume (wt). Systemic to pulmonary flow from bronchial circulation upstream pressure was linearly related to systemic arterial pressure (slope = 0.24, R = 0.845). Increasing Ppv caused a progressive reduction of systemic to pulmonary flow from bronchial circulation, which stopped when Ppv was 44 +/- 6 cmH2O and pulmonary arterial pressure was 46 +/- 7 cmH2O. A further increase in Ppv reversed systemic to pulmonary flow from bronchial circulation with blood flowing back into the dog. When net systemic to pulmonary flow from bronchial circulation by the overflow and weight change technique was zero a small bidirectional flow (3.7 +/- 2.9 ml.min-1 X 100 g dry lobe wt-1) was detected by dispersion of tagged red blood cells that had been injected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We studied the effects of regional alveolar hypoxia on permeability pulmonary edema formation. Anesthetized dogs had a bronchial divider placed so that the left lower lobe (LLL) could be ventilated with a hypoxic gas mixture (HGM) while the right lung was continuously ventilated with 100% O2. Bilateral permeability edema was induced with 0.05 ml/kg oleic acid and after 4 h of LLL ventilation with an HGM (n = 9) LLL gross weight was 161 +/- 13 (SE) g compared with 204 +/- 13 (SE) g (P less than 0.05) in the right lower lobe (RLL). Bloodless lobar water and dry weight were also significantly lower in the LLL as compared with the RLL of the study animals. In seven control animals in which the LLL fractional inspired concentration of O2 (FIO2) was 1.0 during permeability edema, there were no differences in gravimetric variables between LLL and RLL. In eight additional animals, pulmonary capillary pressure (Pc), measured by simultaneous occlusion of left pulmonary artery and vein, was not significantly different between LLL FIO2 of 1.0 and 0.05 either before or after pulmonary edema. We conclude that, in the presence of permeability pulmonary edema, regional alveolar hypoxia causes reduction in edema formation. The decreased edema formation during alveolar hypoxia is not due to a reduction in Pc.  相似文献   

12.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

13.
We tested the hypothesis that, in canine embolic pulmonary hypertension, upstream transmission of increased left atrial pressure (LAP) is inversely related to the level of the pressure intercept (PI) obtained by extrapolation from the linear pulmonary vascular pressure-flow (P-Q) plot. P-Q coordinates were obtained by varying Q through systemic fistulas. Seven group 1 dogs were embolized with autologous blood clot to produce marked pulmonary hypertension and mean pulmonary arterial pressure (PAP), and PI increased from 15 to 41 mmHg (P less than 0.001) and from 8.8 to 31 mmHg (P less than 0.001), respectively. Before and after embolization we assessed effects of increased LAP, produced by inflation of a left atrial balloon, on PAP at constant Q. Embolization depressed the mean slope of this relationship from 0.78 to 0.16 (P less than 0.001). Subsequently, six group 2 dogs were embolized to produce moderate pulmonary hypertension with a mean PI of 22 mmHg. This value was significantly less than PI in group 1 (P less than 0.01). After embolization, the slope of the PAP-LAP relationship was greater in group 2 than group 1: 0.47 vs. 0.16 (P less than 0.01). We conclude that the upstream transmission of left atrial pressure is inversely related to PI and that marked embolic pulmonary hypertension produces an effective vascular waterfall.  相似文献   

14.
Sildenafil has been shown to be an effective treatment of pulmonary arterial hypertension and is believed to present with pulmonary selectivity. This study was designed to determine the site of action of sildenafil compared with inhaled nitric oxide (NO) and intravenous sodium nitroprusside (SNP), known as selective and nonselective pulmonary vasodilators, respectively. Inhaled NO (40 ppm), and maximum tolerated doses of intravenous SNP and sildenafil, (5 microg x kg(-1) x min(-1) and 0.1 mg x kg(-1) x h(-1)), respectively, were administered to eight dogs ventilated in hypoxia. Pulmonary vascular resistance (PVR) was evaluated by pulmonary arterial pressure (Ppa) minus left atrial pressure (Pla) vs. flow curves, and partitioned into arterial and venous segments by the occlusion method. Right ventricular hydraulic load was defined by pulmonary arterial characteristic impedance (Zc) and elastance (Ea) calculations. Right ventricular arterial coupling was estimated by the ratio of end-systolic elastance (Ees) to Ea. Decreasing the inspired oxygen fraction from 0.4 to 0.1 increased Ppa - Pla at a standardized flow of 3 l x min(-1) x m(-2) from 6 +/- 1 to 18 +/- 1 mmHg (mean +/- SE). Ppa - Pla was decreased to 9 +/- 1 by inhaled NO, 14 +/- 1 by SNP, and 14 +/- 1 mmHg by sildenafil. The partition of PVR, Zc, Ea, and Ees/Ea was not affected by the three interventions. Inhaled NO did not affect systemic arterial pressure, which was similarly decreased by sildenafil and SNP, from 115 +/- 4 to 101 +/- 4 and 98 +/- 5 mmHg, respectively. We conclude that inhaled NO inhibits hypoxic pulmonary vasoconstriction more effectively than sildenafil or SNP, and sildenafil shows no more selectivity for the pulmonary circulation than SNP.  相似文献   

15.
The site and nature of change in resistance to blood flow in canine left lung lobe preparation after changes in blood viscosity were assessed by using the arterial and venous occlusion (AVO) technique and the vascular pressure-flow relationship. Blood viscosity was changed by erythrocyte (RBC) shrinkage and swelling with hypertonic and hypotonic NaCl solutions and by RBC membrane rigidification with heat treatment (49 degrees C for 1 h). The results show that although all three methods of changing blood viscosity increased the pulmonary vascular resistance (PVR) by 15-50%, the site and nature of the change in PVR were different in each case. The AVO data showed that the increase in PVR with heat treatment of RBC's was due entirely (100%) to increased resistance of the middle microvascular segment, whereas deviation from normal osmolarity potentiated the resistance in arterial, middle, and venous segments. By examining the effect of osmolarity in plasma-perfused lobes, it was possible to separate the increase in PVR due to changes in RBC deformability from those due to other factors. The increase in arterial and venous resistances with hypertonic solution was attributed in part (approximately 50%) to factors other than RBC's; however, the increase in middle resistance was entirely due to RBC crenation. The increase in arterial and venous resistances with hypotonic solutions was small and was apparently caused by factors other than RBC swelling, whereas the increase in middle resistance was partially (approximately 50%) due to RBC swelling and partially to other factors (e.g., endothelial cell hydration).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To evaluate pulmonary vasodilation in a structurally altered pulmonary vascular bed, we gave endothelium-dependent (acetylcholine) and endothelium-independent [sodium nitroprusside, prostaglandin I2 (PGI2)] vasodilators in vivo and to isolated lobar pulmonary arteries from neonatal calves with severe pulmonary hypertension. Acetylcholine, administered by pulmonary artery infusion, decreased pulmonary arterial pressure from 120 +/- 7 to 71 +/- 6 mmHg and total pulmonary resistance from 29.4 +/- 2.6 to 10.4 +/- 0.9 mmHg.l-1.min without changing systemic arterial pressure (90 +/- 5 mmHg). Although both sodium nitroprusside and PGI2 lowered pulmonary arterial pressure to 86 +/- 4 and 96 +/- 4 mmHg, respectively, they also decreased systemic arterial pressure to 65 +/- 4 and 74 +/- 3 mmHg, respectively. Neither sodium nitroprusside nor PGI2 was as effective as acetylcholine at lowering total pulmonary resistance (18.0 +/- 3.6 and 19.1 +/- 2.2 mmHg.l-1.min, respectively). Right-to-left cardiac shunt through the foramen ovale was decreased by acetylcholine from 1.6 +/- 0.4 to 0.1 +/- 0.2 l/min but was not changed by sodium nitroprusside or PGI2. Isolated lobar pulmonary arteries from pulmonary hypertensive calves did not relax in response to acetylcholine, whereas isolated pulmonary arteries from age-matched control calves did relax in response to acetylcholine. Control and pulmonary hypertensive lobar pulmonary arteries relaxed equally well in response to sodium nitroprusside. We concluded that acetylcholine vasodilation was impaired in vitro in isolated lobar pulmonary arteries but was enhanced in vivo in resistance pulmonary arteries in neonatal calves with pulmonary hypertension.  相似文献   

17.
We studied the effect of systemic hypoxia on the bronchial vascular pressure-flow relationship in anesthetized ventilated sheep. The bronchial artery, a branch of the bronchoesophageal artery, was cannulated and perfused with a pump with blood from a femoral artery. Bronchial blood flow was set so bronchial arterial pressure approximated systemic arterial pressure. For the group of 25 sheep, control bronchial blood flow was 22 ml/min or 0.7 ml.min-1.kg-1. During the hypoxic exposure, animals were ventilated with a mixture of N2 and air to achieve an arterial PO2 (PaO2) of 30 or 45 Torr. For the more severe hypoxic challenge, bronchial vascular resistance (BVR), as determined by the slope of the linearized pressure-flow curve, decreased acutely from 3.8 +/- 0.4 mmHg.ml-1.min to 2.9 +/- 0.3 mmHg.ml-1.min after 5 min of hypoxia. However, this vasodilation was not sustained, and BVR measured at 30 min of hypoxia was 4.2 +/- 0.8 mmHg.ml-1.min. The zero flow intercept, an index of downstream pressure, remained unaltered during the hypoxic exposure. Under conditions of moderate hypoxia (PaO2 = 45 Torr), BVR decreased from 4.6 +/- 0.3 to 3.8 +/- 0.4 mmHg.ml-1.min at 5 min and remained dilated at 30 min (3.6 +/- 0.5 mmHg.ml-1.min). To determine whether dilator prostaglandins were responsible for the initial bronchial vascular dilation under conditions of severe hypoxia (PaO2 approximately equal to 30 Torr), we studied an additional group of animals with pretreatment with the cyclooxygenase inhibitors indomethacin (2 mg/kg) and ibuprofen (12.5 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previous studies in skeletal muscle have shown a substantial (>100%) increase in venous vascular resistance with arterial pressure reduction to 40 mmHg, but a microcirculatory study showed no significant venular diameter changes in the horizontal direction during this procedure. To examine the possibility of venular collapse in the vertical direction, a microscope was placed horizontally to view a vertically mounted rat spinotrapezius muscle preparation. We monitored the diameters of venules (mean diameter 73. 8 +/- 37.0 microm, range 13-185 microm) oriented horizontally and vertically with a video system during acute arterial pressure reduction by hemorrhage. Our analysis showed small but significant (P < 0.0001) diameter reductions of 1.0 +/- 2.5 microm and 1.8 +/- 3. 1 microm in horizontally and vertically oriented venules, respectively, upon reduction of arterial pressure from 115.0 +/- 26. 3 to 39.8 +/- 12.3 mmHg. The venular responses were not different after red blood cell aggregation was induced by Dextran 500 infusion. We conclude that diameter changes in venules over this range of arterial pressure reduction are isotropic and would likely increase venous resistance by <10%.  相似文献   

19.
We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.  相似文献   

20.
The vasopressor response to graded bolus doses (50-500 micrograms) of serotonin (5-hydroxytryptamine; 5-HT) was examined in the isolated canine lower left lung lobe (LLL) perfused at constant flow with autogenous blood before and after cyclooxygenase inhibition (COI). Lobar vascular resistance (LVR) was partitioned into pre- (Ra) and postcapillary (Rv) segments by venous occlusion with lobar blood volume changes monitored gravimetrically. Before COI, 5-HT produced transient, dose-dependent increases in pulmonary arterial pressure (Ppa) of 43.8 +/- 4.8-123.0 +/- 8.5% (n = 22) and simultaneous decreases in lobar blood volume (5.5 +/- 0.5-8.2 +/- 0.6 g/100 g LLL) with nearly proportionate increases in Ra and Rv at each 5-HT dose. After the initial challenge to 5-HT, LLL's were treated either with saline (n = 7) or one of three chemically distinct cyclooxygenase inhibitors. COI with 40 microM indomethacin (n = 6) or 45 microM meclofenamate (n = 6) increased resting LVR by 36.0 +/- 8.3% (P less than 0.01; n = 12) and decreased the Ra/Rv from 1.9 +/- 0.3 to 1.1 +/- 0.2 (P less than 0.01), whereas 1 mM aspirin (n = 3) caused a fourfold increase in resting LVR without affecting Ra/Rv. After indomethacin or meclofenamate treatment, the vasopressor response to graded doses of 5-HT was markedly potentiated as Ppa increased by 71.6 +/- 7.6-207.0 +/- 24.6%. COI did not potentiate the lobar vasopressor response to graded doses (10-100 micrograms) of norepinephrine (NE, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号