首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifteen healthy female subjects were studied for eight days while living conventionally. Subjects were free to choose the ways they spent their time within a framework of regular times of retiring and rising; in practice, much of the waking time was spent in sedentary activities. Nine of the subjects were aware of the natural light-dark cycle, this approximating to a 12:12 L:D schedule at the time of year when the study took place. Before the study, subjects were assessed for their degree of "morningness" by questionnaire; throughout the study, they wore a rectal probe, and an activity meter on their non-dominant wrist. The timing (phase) and amplitude of the circadian rectal temperature rhythm were assessed on each day by cosinor analysis as well as by a me thod based on visual inspection of the data. These two parameters were also assessed after the temperature data for each day had been "purified" by a number of methods. From these results it was possible to investigate the effect of purification upon the amplitude of the circadian rhythm of temperature. Also, the day-by-day variability of phase, and the relationship between morningness and phase, were compared using these methods of phase estimation, and using cross-correlation between data sets from adjacent days; in all cases, raw and purified temperature data were used. There was a significantly greater amount of daily variation in phase using purified rather than raw data sets, and this difference was present with all methods of purification as well as with all methods for estimating phase. Purifi cation decreased the amplitude of the circadian temperature rhythm by about 30%. Finally, there was a significant correlation between the morningness score of the subjects and the phase of the circadian temperature rhythm, the phase becoming earlier with increasing morningness; when this relationship was re-examined using purified data, it became more marked. These results reflect the masking effects exerted upon raw temperature data by lifestyle. The extent to which the purification methods enable the endogenous component of a circadian rhythm – and, by implication, the output of the endogenous circadian oscillator – to be estimated in subjects living normally is addressed.  相似文献   

2.
Deep body temperature and sleep/activity diaries data were recorded during control days and for 6 days after simulated time zone transitions of 8 h to the east (six subjects) or west (seven subjects). Circadian rhythms were assessed by cosinor analysis of both raw data (the conventional method) and purified data (corrected for the effects of sleep and activity). Analysis of raw data gives misleading information about the phase and amplitude of the rhythms due to the masking effects of the exogenous component. Use of purified data indicates that during the process of adjustment after an eastward shift (a) phase changes are more erratic than after a shift to the west; (b) no marked decrease in the amplitude of the rhythms is evident; and (c) no clear evidence exists that the circadian rhythm breaks up temporarily. The masking effect was less after the time zone transition if sleep maintenance was poor.  相似文献   

3.
Deep body temperature and sleep/activity diaries data were recorded during control days and for 6 days after simulated time zone transitions of 8 h to the east (six subjects) or west (seven subjects). Circadian rhythms were assessed by cosinor analysis of both raw data (the conventional method) and purified data (corrected for the effects of sleep and activity). Analysis of raw data gives misleading information about the phase and amplitude of the rhythms due to the masking effects of the exogenous component. Use of purified data indicates that during the process of adjustment after an eastward shift (a) phase changes are more erratic than after a shift to the west; (b) no marked decrease in the amplitude of the rhythms is evident; and (c) no clear evidence exists that the circadian rhythm breaks up temporarily. The masking effect was less after the time zone transition if sleep maintenance was poor.  相似文献   

4.
Nine healthy females were studied about the time of the spring equinox while living in student accommodations and aware of the passage of solar time. After 7 control days, during which a conventional lifestyle was lived under a 24h “constant routine,” the subjects lived 17 × 27h “days” (9h sleep in the dark and 18h wake using domestic lighting, if required). Throughout the experiment, recordings of wrist activity and rectal (core) temperature were taken. The raw temperature data were assessed for phase and amplitude by cosinor analysis and another method, “crossover times,” which does not assume that the data set is sinusoidal. Two different purification methods were used in attempts to remove the masking effects of sleep and activity from the core temperature record and so to measure more closely the endogenous component of this rhythm; these two methods were “purification by categories” and “purification by intercepts.” The former method assumes that the endogenous component is a sinusoid, and that the masking effects can be estimated by putting activity into a number of bands or categories. The latter method assumes that a temperature that would correspond to complete inactivity can be estimated from measured temperatures by linear regression of these on activity and extrapolation to a temperature at zero activity. Three indices were calculated to assess the extent to which exogenous effects had been removed from the temperature data by these purification methods. These indices were the daily variation of phase about its median value; the ratio of this variation to the daily deviation of phase about midactivity; and the relationship between amplitude and the square of the deviation of phase from midactivity. In all cases, the index would decrease in size as the contribution of the exogenous component to a data set fell. The purification by categories approach was successful in proportion to the number of activity categories that was used, and as few as four categories produced a data set with significantly less masking than raw data. The method purification by intercepts was less successful unless the raw data had been “corrected” to reflect the direct effects of sleep that were independent of activity (a method to achieve this being produced). Use of this purification method with the corrected data then gave results that showed least exogenous influences. Both this method and the purification by categories method with 16 categories of activity gave evidence that the exogenous component no longer made a significant contribution to the purified data set. The results were not significantly influenced by assessing amplitude and phase of the circadian rhythm from crossover times rather than cosinor analysis. The relative merits of the different methods, as well as of other published methods, are compared briefly; it is concluded that several purification methods, of differing degrees of sophistication and ease of application to raw data, are of value in field studies and other circumstances in which constant routines are not possible or are ethically undesirable. It is also concluded that such methods are often somewhat limited insofar as they are based on pragmatic or biological, rather than mathematical, considerations, and so it is desirable to attempt to develop models based equally on mathematics and biology. (Chronobiology International, 17(4), 539-566, 2000)  相似文献   

5.
Nine healthy females were studied about the time of the spring equinox while living in student accommodations and aware of the passage of solar time. After 7 control days, during which a conventional lifestyle was lived under a 24h “constant routine,” the subjects lived 17 × 27h “days” (9h sleep in the dark and 18h wake using domestic lighting, if required). Throughout the experiment, recordings of wrist activity and rectal (core) temperature were taken. The raw temperature data were assessed for phase and amplitude by cosinor analysis and another method, “crossover times,” which does not assume that the data set is sinusoidal. Two different purification methods were used in attempts to remove the masking effects of sleep and activity from the core temperature record and so to measure more closely the endogenous component of this rhythm; these two methods were “purification by categories” and “purification by intercepts.” The former method assumes that the endogenous component is a sinusoid, and that the masking effects can be estimated by putting activity into a number of bands or categories. The latter method assumes that a temperature that would correspond to complete inactivity can be estimated from measured temperatures by linear regression of these on activity and extrapolation to a temperature at zero activity. Three indices were calculated to assess the extent to which exogenous effects had been removed from the temperature data by these purification methods. These indices were the daily variation of phase about its median value; the ratio of this variation to the daily deviation of phase about midactivity; and the relationship between amplitude and the square of the deviation of phase from midactivity. In all cases, the index would decrease in size as the contribution of the exogenous component to a data set fell. The purification by categories approach was successful in proportion to the number of activity categories that was used, and as few as four categories produced a data set with significantly less masking than raw data. The method purification by intercepts was less successful unless the raw data had been “corrected” to reflect the direct effects of sleep that were independent of activity (a method to achieve this being produced). Use of this purification method with the corrected data then gave results that showed least exogenous influences. Both this method and the purification by categories method with 16 categories of activity gave evidence that the exogenous component no longer made a significant contribution to the purified data set. The results were not significantly influenced by assessing amplitude and phase of the circadian rhythm from crossover times rather than cosinor analysis. The relative merits of the different methods, as well as of other published methods, are compared briefly; it is concluded that several purification methods, of differing degrees of sophistication and ease of application to raw data, are of value in field studies and other circumstances in which constant routines are not possible or are ethically undesirable. It is also concluded that such methods are often somewhat limited insofar as they are based on pragmatic or biological, rather than mathematical, considerations, and so it is desirable to attempt to develop models based equally on mathematics and biology. (Chronobiology International, 17(4), 539–566, 2000)  相似文献   

6.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

7.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

8.
Eight healthy males were studied for a total of 13 subject-days to assess if gut (from an ingested pill) and axilla (from a thermally insulated skin probe) temperatures would act as a substitute for rectal temperature in field studies of the circadian rhythm of core temperature. Subjects slept and went about their activities, indoors and outdoors, normally. Regular recordings (at 6min intervals) were made of temperatures from the three sites. In addition, activity was measured (by a sensor on the nondominant wrist) so that the raw temperature data could be “purified,” that is, corrected for the direct effects of sleep and activity. Inspection of the raw data indicated that there was a close parallelism between rectal and gut temperatures, but that the parallelism between rectal and insulated axilla temperatures was less reliable. This parallelism was supported by initial calculations of the correlations between rectal and gut temperatures (high and positive) and between rectal and insulated axilla (lower, though still positive) temperatures. Calculation of the limits of agreement between the parameters of the cosine curves fitted to the raw data confirmed that the rectal and gut temperatures were far closer with regard to acrophase and amplitude than were rectal and insulated axilla temperatures (-0.31±0.89 vs. +0.75±6.03 h and +0.002±0.116 vs. +0.083±0.625°C, respectively). After purification of the temperature data, the limits of agreement for the cosine parameters acrophase and amplitude still indicated that there was a closer agreement between rectal and gut temperatures than between rectal and insulated axilla temperatures (-0.30±1.12 vs. +0.58±6.69 h, and +0.007±0.116 vs. +0.104±0.620°C, respectively). Part of the explanation of this difference was the unreliable relationships between temperature changes in insulated axilla temperature and bursts of activity and going to bed. It is concluded that, whereas gut temperature is a viable alternative to rectal temperature (from the viewpoints of both user acceptability and the reliability of data obtained), insulated axilla temperature, though acceptable to subjects, is unreliable from an experimental viewpoint.  相似文献   

9.
Eight healthy males were studied for a total of 13 subject-days to assess if gut (from an ingested pill) and axilla (from a thermally insulated skin probe) temperatures would act as a substitute for rectal temperature in field studies of the circadian rhythm of core temperature. Subjects slept and went about their activities, indoors and outdoors, normally. Regular recordings (at 6min intervals) were made of temperatures from the three sites. In addition, activity was measured (by a sensor on the nondominant wrist) so that the raw temperature data could be “purified,” that is, corrected for the direct effects of sleep and activity. Inspection of the raw data indicated that there was a close parallelism between rectal and gut temperatures, but that the parallelism between rectal and insulated axilla temperatures was less reliable. This parallelism was supported by initial calculations of the correlations between rectal and gut temperatures (high and positive) and between rectal and insulated axilla (lower, though still positive) temperatures. Calculation of the limits of agreement between the parameters of the cosine curves fitted to the raw data confirmed that the rectal and gut temperatures were far closer with regard to acrophase and amplitude than were rectal and insulated axilla temperatures (?0.31±0.89 vs. +0.75±6.03 h and +0.002±0.116 vs. +0.083±0.625°C, respectively). After purification of the temperature data, the limits of agreement for the cosine parameters acrophase and amplitude still indicated that there was a closer agreement between rectal and gut temperatures than between rectal and insulated axilla temperatures (?0.30±1.12 vs. +0.58±6.69 h, and +0.007±0.116 vs. +0.104±0.620°C, respectively). Part of the explanation of this difference was the unreliable relationships between temperature changes in insulated axilla temperature and bursts of activity and going to bed. It is concluded that, whereas gut temperature is a viable alternative to rectal temperature (from the viewpoints of both user acceptability and the reliability of data obtained), insulated axilla temperature, though acceptable to subjects, is unreliable from an experimental viewpoint.  相似文献   

10.
Nine healthy female subjects were studied when exposed to the natural light-dark cycle, but living for 17 “days” on a 27h day (9h sleep, 18h wake). Since the circadian endogenous oscillator cannot entrain to this imposed period, forced desynchronization between the sleep/activity cycle and the endogenous circadian temperature rhythm took place. This enabled the effects of activity on core temperature to be assessed at different endogenous circadian phases and at different stages of the sleep/activity cycle. Rectal temperature was measured at 6-minute intervals, and the activity of the nondominant wrist was summed at 1-minute intervals. Each waking span was divided into overlapping 3h sections, and each section was submitted to linear regression analysis between the rectal temperatures and the total activity in the previous 30 minutes. From this analysis were obtained the gradient (of the change in rectal temperature produced by a unit change in activity) and the intercept (the rectal temperature predicted when activity was zero). The gradients were subjected to a two-factor analysis of variance (ANOVA) (circadian phase/ time awake). There was no significant effect of time awake, but circadian phase was highly significant statistically. Post hoc tests (Newman-Keuls) indicated that gradients around the temperature peak were significantly less than those around its trough. The intercepts formed a sinusoid that, for the group, showed a mesor (±SE) of 36.97 (±0.12) and amplitude (95% confidence interval) of 0.22°C (0.12°C, 0.32°C). We conclude that this is a further method for removing masking effects from circadian temperature rhythm data in order to assess its endogenous component, a method that can be used when subjects are able to live normally. We suggest also that the decreased effect of activity on temperature when the endogenous circadian rhythm and activity are at their peak will reduce the possibility of hyperthermia.  相似文献   

11.
Heart rate (HR) was continuously monitored during successive 24-hr periods in 19 healthy subjects and 26 major depressed patients (DSM III-R). Recordings were performed after a 2-week wash-out period and the morningness or eveningness typology of each subject was determined. The chronobiological parameters and rhythm percentage (RP) were calculated by the single cosinor method from the smoothed HR curves of each subject. In normal subjects, HR follows a circadian rhythm (RP greater than 65%) with the lowest values at night. Morning type subjects have an earlier peak time (13:30) than evening type subjects (17:30). Major depressive patients were split into two groups; in the first one HR circadian rhythm was still present (RP greater than 63%) with a decrease in amplitude (24%) while in the second group, no circadian rhythm of HR could be detected (RP less than 25%, decrease in amplitude greater than 70%). In the group of patients with a persisting HR circadian rhythm, no veritable phase advance was observed. Our results suggest that circadian HR rhythm, which can be easily studied with non-invasive methods, might represent a chronobiological marker of some depressions. Given the lag that exists between the rhythms of morning type and evening type subjects, our study also stresses the importance of taking into account this behavioural trait in chronobiological studies.  相似文献   

12.
There were 15 healthy female subjects, differing in their position on the “morningness-eveningness” scale, studied for 7 consecutive days, first while living a sedentary lifestyle and sleeping between midnight and 08:00 and then while undergoing a “constant routine.” Rectal temperature was measured at regular intervals throughout this time, and the results were subjected to cosinor analysis both before and after “purification” for the effects of physical activity. Results showed that there was a phase difference in the circadian rhythm of core temperature that was associated with the morningness score, with calculations that “morning types” would be phased earlier than “evening types” by up to about 3h. This difference in phase (which was also statistically significant when the group was divided by a median split into a “morning group” and an “evening group”) could not be attributed to effects of waking activity and existed in spite of the subjects keeping the same sleep-wake schedule. Moreover, it persisted when the subjects' data had been purified and when the data were obtained from the constant routine. That is, there was an endogenous component to this difference in phase of the core temperature. The morning group also showed a greater fall of core temperature during sleep; this was assessed in two ways, the main one being a comparison of constant routine and nychthemeral data sets after correction for any effects of activity. Even though the morning group was sleeping at a later phase of their circadian temperature rhythm than was the evening group, neither group showed a fall of temperature due to sleep that varied with time elapsed since the temperature acrophase. It is concluded that another factor that differs between morning and evening types is responsible for this difference. (Chronobiology International, 18(2), 227–247, 2001)  相似文献   

13.
Heart rate (HR) was continuously monitored during successive 24-hr periods in 19 healthy subjects and 26 major depressed patients (DSM III-R). Recordings were performed after a 2-week wash-out period and the morningness or eveningness typology of each subject was determined. The chronobiological parameters and rhythm percentage (RP) were calculated by the single cosinor method from the smoothed HR curves of each subject. In normal subjects, HR follows a circadian rhythm (RP > 65%) with the lowest values at night. Morning type subjects have an earlier peak time (13:30) than evening type subjects (17:30). Major depressive patients were split into two groups; in the first one HR circadian rhythm was still present (RP > 63%) with a decrease in amplitude (24%) while in the second group, no circadian rhythm of HR could be detected (RP < 25%, decrease in amplitude > 70%). In the group of patients with a persisting HK circadian rhythm, no veritable phase advance was observed. Our results suggest that circadian HR rhythm, which can be easily studied with non-invasive methods, might represent a chronobiological marker of some depressions. Given the lag that exists between the rhythms of morning type and evening type subjects, our study also stresses the importance of taking into account this behavioural trait in chronobiological studies.  相似文献   

14.
The purpose of this study was to describe and compare the circadian rhythm of body temperature and cortisol, as well as self-reported clock times of sleep onset and offset on weekdays and weekends in 19 healthy adult "larks" (morning chronotypes) and "owls" (evening chronotypes), defined by the Home and Ostberg questionnaire. Day-active subjects entered the General Clinical Research Center, where blood was sampled every 2 h over 38 h for later analysis for cortisol concentration by enzyme immunoassay. Rectal body temperature was measured continuously. Lights were turned off at 22:30 for sleep and turned on at 06:00, when subjects were awakened. The acrophases (peak times) of the cortisol and temperature rhythms occurred 55 minutes (P < or = .05) and 68 minutes (P < .01), respectively, earlier in the morningness group. The amplitude of the cortisol rhythm was lower in the eveningness than in the morningness group (P = n.s.). Subject groups differed on all indices of habitual and preferred timing of sleep and work weekdays and weekends (P = .05-.001).  相似文献   

15.
Clinical investigators often use ambulatory temperature monitoring to assess the endogenous phase and amplitude of an individual's circadian pacemaker for diagnostic and research purposes. However, an individual's daily schedule includes changes in levels of activity, in posture, and in sleep-wake state, all of which are known to have masking or evoked effects on core body temperature (CBT) data. To compensate for or to correct these masking effects, many investigators have developed "demasking" techniques to extract the underlying circadian phase and amplitude data. However, the validity of these methods is uncertain. Therefore, the authors tested a variety of analytic methods on two different ambulatory data sets from two different studies in which the endogenous circadian pacemaker was not synchronized to the sleep-wake schedule. In both studies, circadian phase estimates calculated from CBT collected when each subject was ambulatory (i.e., free to perform usual daily activities) were compared to those calculated during the same study when the same subject's activities were controlled. In the first study, 24 sighted young and older subjects living on a 28-h scheduled "day" protocol were studied for approximately 21 to 25 cycles of 28-h each. In the second study, a blind man whose endogenous circadian rhythms were not synchronized to the 24-h day despite his maintenance of a regular 24-h sleep-wake schedule was studied for more than 80 consecutive 24-h days. During both studies, the relative phase of the endogenous (circadian) and evoked (scheduled activity-rest) components of the ambulatory temperature data changed progressively and relatively slowly, enabling analysis of the CBT rhythm at nearly all phase relationships between the two components. The analyses of the ambulatory temperature data demonstrate that the masking of the CBT rhythm evoked by changes in activity levels, posture, or sleep-wake state associated with the evoked schedule of activity and rest can significantly obscure the endogenous circadian component of the signal, the object of study. In addition, the masking effect of these evoked responses on temperature depends on the circadian phase at which they occur. These nonlinear interactions between circadian phase and sleep-wake schedule render ambulatory temperature data unreliable for the assessment of endogenous circadian phase. Even when proposed algebraic demasking techniques are used in an attempt to reveal the endogenous temperature rhythm, the phase estimates remain severely compromised.  相似文献   

16.
Spontaneous activity and the body temperature of laboratory mice were recorded telemetrically using implantable transmitters. Following ten control days (L : D = 12 : 12; light from 07:00 to 19:00), the LD cycle was phase-advanced by shortening the light time by 8 h. Recordings were continued for a further 3 weeks. The raw temperature data were unmasked or ‘purified’ — that is, the temperature changes due to locomotor activity were removed, so revealing the endogenous component of the rhythm — using a regression method previously developed by us. The circadian rhythms of activity and measured body temperature resynchronized on average after 8 days. During resynchronization, both rhythms tended to show two components, one adjusting by a phase advance and the other by a phase delay. However, after purification of the body temperature rhythm, only the advancing component remained. These results indicate that the delaying component of the measured temperature rhythm was caused by masking due to activity, and that the endogenous component of this rhythm did not divide into two components during the resynchronization process. Also, the endogenous component of the circadian rhythm of body temperature and one component of the activity rhythm seemed to be controlled by the same oscillator. It remains uncertain how the other component of the activity rhythm is regulated.  相似文献   

17.
The present study tested the assumption that the temporal parameters of melatonin synthesis indicate the individual circadian phase position better than the minimum of rectal temperature.

Thirty-four men and 17 women (16–32 yr, 14 morning, 14 neither, 23 evening types) completed a constant routine (24–26h bedrest, <30 lux, 18–20°C, hourly isocaloric diet). Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded throughout.

The minima of rectal temperature and heart rate as well as the temporal parameters of melatonin synthesis occurred earlier in morning than in evening types and were significantly related to the subjective circadian phase as determined by the morningness–eveningness questionnaire. The level of significance and the resolving power was greater for the melatonin parameters and for the minimum of heart rate than for the minimum of rectal temperature. The temporal differences between the opposite diurnal types were larger and the correlation coefficients with morningness were higher in men than in women.

The temporal parameters of melatonin synthesis are valid indicators of the individual circadian phase. As morningness is closely related to the ability to cope with shiftwork, the determination of the melatonin profile might be a valuable element of the criteria when assigning a person to shiftwork.  相似文献   

18.
This study compared rectal temperature rhythms in groups of subjects who either did (n = 5) or did not (n - 7) show a clear postlunch dip in performance at a monotonous (25-30 min) vigilance task. Performance was tested every 2h in a standardized routine with lunch replaced by hourly liquid food supplements. Those showing the postlunch performance dip had a higher amplitude and later peaking 12h component to their rectal temperature rhythm that those who did not, resulting in flat, rather than rising, temperatures over the 10:00-15:00 time interval. The effect could not be explained by intergroup differences in prior sleep, morningness, or gender, although there was a trend (p = 0.09) for the “dip” group to be slightly younger (21.8y vs. 24.2y). The postlunch dip appears to be an endogenous phenomenon individually determined, but related to the strength of the (12h) harmonic of the circadian system.  相似文献   

19.
Fourteen healthy subjects have been studied in an isolation unit while living on a 30h “day” (20h awake, 10h asleep) for 14 (solar) days but while aware of real time. Waking activities were sedentary and included reading, watching television, and so forth. Throughout, regular recordings of rectal temperature were made, and in a subgroup of 6 subjects, activity was measured by a wrist accelerometer. Temperature data have been subjected to cosinor analysis after “purification,” a method that enables the endogenous (clock-driven) and exogenous (activity-driven) components of the circadian rhythm to be assessed. Moreover, the protocol enables effects due to the circadian rhythm and time-since-waking to be separated. Results showed that activity was slightly affected by the endogenous temperature rhythm. Also, the masking effects on body temperature exerted by the exogenous factors appeared to be less than average in the hours before and just after the peak of the endogenous temperature rhythm. This has the effect of producing a temperature plateau rather than a peak during the daytime. The implications of this for mental performance and sleep initiation are discussed. (Chronobiology International, 13(4), 261-271, 1996)  相似文献   

20.
The present study tested the assumption that the temporal parameters of melatonin synthesis indicate the individual circadian phase position better than the minimum of rectal temperature. Thirty-four men and 17 women (16-32 yr, 14 morning, 14 neither, 23 evening types) completed a constant routine (24-26 h bedrest, <30 lux, 18-20 degrees C, hourly isocaloric diet). Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded throughout. The minima of rectal temperature and heart rate as well as the temporal parameters of melatonin synthesis occurred earlier in morning than in evening types and were significantly related to the subjective circadian phase as determined by the morningness-eveningness questionnaire. The level of significance and the resolving power was greater for the melatonin parameters and for the minimum of heart rate than for the minimum of rectal temperature. The temporal differences between the opposite diurnal types were larger and the correlation coefficients with morningness were higher in men than in women. The temporal parameters of melatonin synthesis are valid indicators of the individual circadian phase. As morningness is closely related to the ability to cope with shiftwork, the determination of the melatonin profile might be a valuable element of the criteria when assigning a person to shiftwork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号