首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activating the protein-tyrosine kinase of v-Src in BALB/c 3T3 cells results in rapid increases in the intracellular second messenger, diacylglycerol (DAG). v-Src-induced increases in radiolabeled DAG were most readily detected when phospholipids were prelabeled with myristic acid, which is incorporated predominantly into phosphatidylcholine. Consistent with this observation, v-Src increased the level of intracellular choline. No increase in DAG was observed when cells were prelabeled with arachidonic acid, which is incorporated predominantly into phosphatidylinositol. Inhibiting phosphatidic acid (PA) phosphatase, which hydrolyzes PA to DAG, blocked v-Src-induced DAG production and enhanced PA production, implicating a type D phospholipase. Consistent with the involvement of a type D phospholipase, v-Src increased transphosphatidylation activity, which is characteristic of type D phospholipases. Thus, v-Src-induced increases in DAG most likely result from the activation of a type D phospholipase/PA phosphatase-mediated signaling pathway.  相似文献   

2.
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction.  相似文献   

3.
The current studies explore the role of phospholipase D (PLD) in mast cell activation. Although most investigators believe that receptor-mediated accumulation of 1,2-diacylglycerol (DAG) occurs by phospholipase C hydrolysis of phosphoinositides, our previous work indicated a modest role for these substrates and suggested that phosphatidylcholine (PC) is the more likely substrate. PLD cleaves the terminal phosphodiester bond of phospholipids to yield phosphatidic acid (PA), but in the presence of ethanol, it transfers the phosphatidyl moiety of the phospholipid substrate to ethanol producing phosphatidylethanol (PEt); a reaction termed transphosphatidylation. In purified rat mast cells prelabeled with [3H]arachidonic acid, [3H]palmitic acid, or 1-O-[3H]alkyl-lysoPC, a receptor-associated increase in PLD activity was initially suggested by the rapid accumulation of labeled PA, although other mechanisms might be involved. PLD activity was assessed more directly by the production of labeled PEt by PLD-mediated transphosphatidylation in the presence of ethanol. IgE receptor cross-linking resulted in a 3- to 10-fold increase in PLD activity during the 10 min after stimulation, approximately 50% of which occurred during the first two min. PEt formation was dependent on the concentration of ethanol and was maximal at 0.5%. At concentrations of ethanol greater than or equal to 0.2%, receptor-dependent formation of PA was reduced suggesting that the ethanol promoted transphosphatidylation at the expense of hydrolysis. The dose-related decline in PA accumulation seen in the presence of ethanol was similar to ethanol-mediated inhibition of exocytosis suggesting that receptor-mediated PA formation may be of regulatory importance. These observations indicate that PLD-mediated formation of PA occurs in stimulated mast cells and, in conjunction with separate findings of PA phosphohydrolase conversion of PA to DAG in mast cells, suggest that a major mechanism of DAG formation during mast cell activation is PC----PA----DAG.  相似文献   

4.
The mechanism of action by which insulin increases phosphatidic acid (PA) and diacylglycerol (DAG) levels was investigated in cultured hepatoma cells (HEPG2). Insulin stimulated phosphatidylcholine (PC) and phosphatidyl-inositol (PI) degradation through the activation of specific phospholipases C (PLC). The DAG increase appears to be biphasic. The early DAG production seems to be due to PI breakdown, probably through phosphatidyl-inositol-3-kinase (PI3K) involvement, whereas the delayed DAG increase is derived directly from the PC-PLC activity. The absence of phospholipase D (PLD) involvement was confirmed by the lack of PC-derived phosphatidylethanol production. Experiments performed in the presence of R59022, an inhibitor of DAG-kinase, indicated that PA release is the result of the DAG-kinase activity on the DAG produced in the early phase of insulin action.  相似文献   

5.
We have previously reported that platelet-activating factor (PAF) elevates cytosolic free calcium concentration ([Ca2+]i) in fura-2-loaded glomerular mesangial cells. To confirm that this increase in [Ca2+]i is a result of receptor-mediated activation of phospholipase C, we investigated hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) in PAF-treated mesangial cells. PAF (10(-7) M) stimulated a rapid and transient formation of inositol trisphosphate. In concomitant experiments, PAF stimulated a biphasic accumulation of 3H-arachidonate-labeled 1,2-diacylglycerol (DAG). The secondary elevation in DAG was coincident with a rise in 3H-phosphorylcholine (PC) and 3H-phosphorylethanolamine (PE) suggesting that PAF stimulates delayed phospholipase activities which hydrolyze alternate phospholipids besides the polyphosphoinositides. This PAF-stimulated elevation in 3H-water soluble phosphorylbases was seen at 5 min but not at 15 sec suggesting that the initial rise in DAG as well as the initial elevation in [Ca2+]i are due primarily to PtdIns-4,5-P2 hydrolysis. PAF also stimulated PGE2 as well as 3H-arachidonic acid and 3H-lyso phosphatidylcholine (PtdCho) formation. We suggest that arachidonate released specifically from PtdCho via phospholipase A2 is a source of this PAF-elevated PGE2. It has been postulated that anti-inflammatory prostaglandins may antagonize the contractile and proinflammatory effects of PAF via activation of adenylate cyclase. Surprisingly, exogenous PAF reduced basal and receptor-mediated cAMP concentration indicating that PAF-stimulated transmembrane signaling pathways may oppose receptor-mediated activation of adenylyl cyclase. We have taken advantage of the different sensitivities of phospholipases A2 and C(s) to PMA, EGTA, and pertussis toxin to dissociate phospholipase A2 and C activities. Acute PMA-treatment enhanced PAF-stimulated PGE2 formation, reduced PAF-induced elevations in [Ca2+]i and had no effect upon PAF-stimulated 3H-PE. We have also demonstrated that phospholipase A2, but not PtdIns-specific phospholipase C, was sensitive to external calcium concentration. The role of a GTP-binding protein to couple PAF-receptors to the PtdIns-specific phospholipase C was confirmed as GTP gamma S synergistically elevated PAF-stimulated inositol phosphate formation. We also demonstrated that pertussis toxin ADP-ribosylates a single protein of an apparent 42 kD mass and that PAF pretreatment reduced subsequent ADP-ribosylation in a time-dependent manner. However, pertussis toxin had no effect upon phospholipase C-generated water soluble phosphorylbases or inositol phosphates. In contrast, PAF-stimulated phospholipase A2 and PAF-inhibited adenylyl cyclase activities were sensitive to pertussis toxin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We observed that in hypoxic myocardial cells prostacyclin and arachidonic acid release increased and that during hypoxia phospholipid degradation also occurred. In order to clarify the mechanism of phospholipid degradation, we determined the activity of phospholipases A2 and C. We found that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were markedly decreased and that lysophosphatidylcholine and lysophosphatidylethanolamine were increased. In contrast, there was only slight phosphatidylinositol degradation and no lysophosphatidylinositol elevation was observed. These results show that phospholipase A2 was activated in hypoxic myocytes and had substrate specificity towards PC and PE. To study phospholipase C activity, membrane phospholipids were labeled with [3H]choline, [3H]inositol or [3H]ethanolamine. The release of inositol was observed, but neither choline nor ethanolamine was released. In hypoxia, myocardial-cell phospholipase C has high substrate specificity towards phosphatidylinositol. The activation of phospholipases is closely related to the intracellular Ca2+ concentration; it is though that inositol polyphosphatides may regulate intracellular Ca2+. We determined how Ca2+ influx occurs in hypoxia. beta-Adrenergic blockade and Ca2+ antagonists markedly suppressed Ca2+ influx, phospholipase A2 activity, phospholipase C activity and cell death. However, the alpha 1-adrenergic blockade was less effective in suppressing these phenomena. These results suggest that in hypoxic myocardial cells Ca2+ influx mediated by beta-adrenergic stimulation activates phospholipases A2 and C, and that phospholipid degradation and prostacyclin release then occur.  相似文献   

7.
We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC/PE labelling by [3H]arachidonic acid, [3H]myristic acid, and [14C]choline. Phenylephrine, ionophore A23187 and phorbol esters did not increase [2-3H]glycerol incorporation into DAG or other glycerolipids in 2-h-prelabelling experiments; thus activation of the phospholipase C which hydrolyses phosphatidylinositol, its mono- and bis-phosphate, Ca2+ mobilization, and protein kinase C activation, appear to be ruled out as mechanisms to explain the insulin effect on synthesis de novo of PA, DAG and PC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Phospholipase A2 activity in lysates of mast cells such as rat mastocytoma RBL-2H3 cells and mouse bone marrow-derived IL-3-dependent mast cells (BMMC) was measured using phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylserine (PS) as a substrate. Both types of cells exhibited phospholipase A2 activity with a similar pH profile; the optimum pH observed with PS as a substrate was 5.5-7.4, whereas that with PE or PC was 8.0-9.0. PE and PC bearing an arachidonate at the sn-2 position were cleaved more efficiently by PE, PC-hydrolyzing phospholipase A2 than phospholipids with a linoleate. A monoclonal antibody raised against rabbit platelet 85-kDa cytosolic phospholipase A2 absorbed the PE, PC-hydrolyzing activity. PS-hydrolyzing activity was purified from RBL-2H3 cells and BMMC by sequential heparin-Sepharose, butyl-Toyo-pearl, and reverse-phase HPLC. On reverse-phase HPLC, the PS-hydrolyzing activity of RBL cells was separated into two peaks, A and B. The peak B activity was inhibited by the anti-rat 14-kDa group II phospholipase A2 antibody, while the peak A activity was not. The partially purified peak A activity hydrolyzed PS about 10-fold more efficiently than PE at optimum pH of 5.5-7.4. No appreciable hydrolysis was observed with PC or phosphatidylinositol (PI). Thus, mast cells may express at least three distinct phospholipases A2; 14-kDa group II phospholipase A2, 85-kDa cytosolic arachidonate preferential phospholipase A2, and a novel phospholipase A2 that shows high substrate specificity for PS.  相似文献   

9.
Fluctuations in the amounts of choline, inositol 1,4,5-trisphosphate (IP3) and diradylglycerol have been used to monitor phospholipase activation in the human neutrophil. Stimulation of human neutrophils by formylmethionyl-leucylphenylalanine (fMet-Leu-Phe) resulted in a rapid activation of both phosphatidylinositol 4,5-bisphosphate breakdown by phospholipase C and phosphatidylcholine breakdown by phospholipase D. Diradylglycerol accumulation occurred more slowly than that of either choline or IP3 and was inhibited by 30 mM-butanol, suggesting that the bulk was derived from the phospholipase D pathway via phosphatidate phosphohydrolase. Consistent with this is the observation that choline and diradylglycerol are produced in similar amounts. 1,2-Diacylglycerol (DAG) and 1-O-alkyl-2-acyl-sn-glycerol species accumulated with different time courses, indicating that one or more steps in the phospholipase D pathway was selective for the diacyl species. Superoxide production by fMet-Leu-Phe-stimulated neutrophils paralleled DAG accumulation over the first 5 min, but thereafter this production stopped, despite the fact that DAG remained elevated. We conclude that DAG derived from the phospholipase D pathway is only one of the second messengers important in controlling this functional response.  相似文献   

10.
We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of [3H]choline and [3H]phosphorylcholine ([3H]Pchol) from cells containing [3H]choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of [3H]phosphatidic acid ([3H]PA) in cells containing [3H]myristate-labeled PC. [3H]Diacylglycerol ([3H]DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with [3H]myristate and [14C]arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol. By analyzing the increase in 3H versus 14C in DAG, we estimate that the DAG that is formed in response to PMA arises largely from PC. Muscarinic receptor activation also causes formation of DAG from PC, but approximately 20% of carbachol-stimulated DAG appears to arise from hydrolysis of the phosphoinositides.  相似文献   

11.
The release of arachidonate was stimulated by lipopolysaccharides (LPS) from phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) in a murine macrophage-like cell line, RAW264.7. We measured phospholipase activities in cell-free homogenates of macrophages with 2-arachidonyl PC, PE, and PI as substrates. The activities of two phospholipases A2, catalyzing cleavage of arachidonate preferentially either from PC or PE, were detected. These two phospholipase A2 activities showed different pH optima and Ca2+ requirements; the cleavage of arachidonate from PC showed an optimal pH of 7.0 and was Ca2+-dependent, while that from PE showed an optimal pH of 7.5 but was Ca2+-independent. The cleavage of arachidonate from PI showed a different pH profile and was Ca2+-dependent, and diglyceride (DG) was detected as well as arachidonate, suggesting that both phospholipase C and DG lipase participate in this reaction. We next examined these phospholipase activities in homogenates of macrophages pretreated with LPS. All of the phospholipase activities increased at 0.5 h after LPS treatment, and this level was retained for more than 2 h in 2-arachidonyl PC degradation, continued up to 1 h and then dropped to the control level in 2-arachidonyl PE degradation, and suddenly dropped to the control level after 0.5 h in 2-arachidonyl PI degradation. These results suggest that the cleavage of 2-arachidonate from PC, PE, and PI is essentially catalyzed through different pathways, two phospholipase A2 activities being involved in PC and PE breakdown, and phospholipase C and DG lipase activities in PI breakdown, and that the activities of these substrate-specific phospholipases change in response to LPS treatment in macrophages.  相似文献   

12.
The signaling events generated by a cold exposure are poorly known in plants. We were interested in checking the possible activation of enzymes of the phosphoinositide signaling pathway in response to a temperature drop. In Arabidopsis suspension cells labeled with (33)PO(4)(3-), a cold treatment induces a rapid increase of phosphatidic acid (PtdOH) content. This production was due to the simultaneous activation of phospholipase C (through diacylglycerol kinase activity) and phospholipase D, as monitored by the production of inositol triphosphate and of transphosphatidylation product, respectively. Moreover, inhibitors of the phosphoinositide pathway and of diacylglycerol kinase reduced PtdOH production. Enzyme activation occurred immediately after cells were transferred to low temperature. The respective contribution of both kind of phospholipases in cold-induced production of PtdOH could be estimated. We created conditions where phospholipids were labeled with (33)PO(4)(3-), but with ATP being nonradioactive. In such conditions, the apparition of radioactive PtdOH reflected PLD activity. Thus, we demonstrated that during a cold stress, phospholipase D activity accounted for 20% of PtdOH production. The analysis of composition in fatty acids of cold-produced PtdOH compared with that of different phospholipids confirmed that cold-induced PtdOH more likely derived mainly from phosphoinositides. The addition of chemical reagents modifying calcium availability inhibited the formation of PtdOH, showing that the cold-induced activation of phospholipase pathways is dependent on a calcium entry.  相似文献   

13.
Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.  相似文献   

14.
ACh stimulates arachidonic acid (AA) release from membrane phospholipids of vascular endothelial cells (ECs). In rabbit aorta, AA is metabolized through the 15-lipoxygenase pathway to form vasodilatory eicosanoids 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). AA is released from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase A2 (PLA2), or from phosphatidylinositol (PI) by phospholipase C (PLC) pathway. The diacylglycerol (DAG) lipase can convert DAG into 2-arachidonoylglycerol from which free AA can be released by monoacylglycerol (MAG) lipase or fatty acid amidohydrolase (FAAH). We used specific inhibitors to determine the involvement of the PLC pathway in ACh-induced AA release. In rabbit aortic rings precontracted by phenylephrine, ACh induced relaxation in the presence of indomethacin and N(omega)-nitro-L-arginine (L-NNA). These relaxations were blocked by the PLC inhibitor U-73122, DAG lipase inhibitor RHC-80267, and MAG lipase/FAAH inhibitor URB-532. Cultured rabbit aortic ECs were labeled with [14C]AA and stimulated with methacholine (10(-5) M). Free [14C]AA was released by methacholine. Methacholine decreased the [14C]AA content of PI, DAG, and MAG fractions but not PC or PE fractions. Methacholine-induced release of [14C]AA was blocked by U-73122, RHC-80267, and URB-532 but not by U-73343, an inactive analog of U-73122. The data suggested that ACh activates PLC, DAG lipase, and MAG lipase pathway to release AA from membrane lipids. This pathway is important in regulating vasodilatory eicosanoid synthesis and vascular relaxation in rabbit aorta.  相似文献   

15.
Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of phospholipase D (PLD) activation, was monitored. ET-1 stimulated much greater PEt formation in the PKC overexpressing cells. ET-1 action was dose-dependent with a half-maximal effect at 1.0 x 10(-9) M. With increasing ethanol concentrations, [3H]PEt formation increased at the expense of [3H]phosphatidic acid (PA). Propranolol, an inhibitor of PA phosphohydrolase, increased [3H]PA accumulation and decreased [3H]diacylglycerol (DAG) formation. These data are consistent with the formation of [3H]DAG from PC by the sequential action of PLD and PA phosphohydrolase. Phorbol esters are known to stimulate thymidine incorporation and PLD activity to a greater extent in PKC overexpressing cells than in control cells. ET-1 also stimulates thymidine incorporation to a greater extent in the PKC overexpressing cells. The effect of ET-1 on thymidine incorporation into DNA in the overexpressing cells was also dose-dependent with a half-maximal effect at 0.3 x 10(-9) M. Enhanced PLD activity induced by ET-1 in the overexpressing cells may contribute to the mitogenic response, especially in light of a possible role of the PLD product, PA, in regulation of cell growth.  相似文献   

16.
Phosphatidic acid has been proposed to contribute to the mitogenic actions of various growth factors. In32P-labeled neonatal rat cardiac fibroblasts, 100 nM [Sar1]angiotensin II was shown to rapidly induce formation of32P-phosphatidic acid. Levels peaked at 5 min (1.5-fold above control), but were partially sustained over 2 h. Phospholipase D contributed in part to phosphatidic acid formation, as32P- or3H-phosphatidylethanol was produced when cells labeled with [32P]H3PO4 or 1-O-[1,2-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine were stimulated in the presence of 1% ethanol. [Sar1]angiotensin II-induced phospholipase D activity was transient and mainly mediated through protein kinase C (PKC), since PKC downregulation reduced phosphatidylethanol formation by 68%. Residual activity may have been due to increased intracellular Ca2+, as ionomycin also activated phospholipase D in PKC-depleted cells. Phospholipase D did not fully account for [Sar1]angiotensin II-induced phosphatidic acid: 1) compared to PMA, a potent activator of phospholipase D, [Sar1]angiotensin II produced more phosphatidic acid relative to phosphatidylethanol, and 2) PKC downregulation did not affect [Sar1]angiotensin II-induced phosphatidic acid formation. The diacylglycerol kinase inhibitor R59949 depressed [Sar1]angiotensin II-induced phosphatidic acid formation by only 21%, indicating that activation of a phospholipase C and diacylglycerol kinase also can not account for the bulk of phosphatidic acid. Thus, additional pathways not involving phospholipases C and D, such asde novo synthesis, may contribute to [Sar1]angiotensin II-induced phosphatidic acid in these cells. Finally, as previously shown for [Sar1]angiotensin II, phosphatidic acid stimulated mitogen activated protein (MAP) kinase activity. These results suggest that phosphatidic acid may function as an intracellular second messenger of angiotensin II in cardiac fibroblasts and may contribute to the mitogenic action of this hormone on these cells. (Mol Cell Biochem141: 135–143, 1994)Abbreviations DAG diacylglycerol - DMSO dimethyl sulfoxide - lysoPC 1-O-hexadecyl-2-lyso-sn-glycero-3-phosphocholine - NRCF newborn rat cardiac fibroblasts - PA phosphatidic acid - PAPase phosphatidic acid phosphohydrolase - PC phosphatidylcholine - PEt phosphatidylethanol - PI phosphatidylinositol - PL (labeled) phospholipids - PLC phospholipase C - PLD phospholipase D Drs. G. W. Booz and M. M. Taher contributed equally to the work described here.  相似文献   

17.
This study uses human alveolar macrophages to determine whether activation of a phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) is linked to activation of the p42/44 (ERK) kinases by LPS. LPS-induced ERK kinase activation was inhibited by tricyclodecan-9-yl xanthogenate (D609), a relatively specific inhibitor of PC-PLC. LPS also increased amounts of diacylglycerol (DAG), and this increase in DAG was inhibited by D609. LPS induction of DAG was, at least in part, derived from PC hydrolysis. Ceramide was also increased in LPS-treated alveolar macrophages, and this increase in ceramide was inhibited by D609. Addition of exogenous C2 ceramide or bacterial-derived sphingomyelinase to alveolar macrophages increased ERK kinase activity. LPS also activated PKC zeta, and this activation was inhibited by D609. LPS-activated PKC zeta phosphorylated MAP kinase kinase, the kinase directly upstream of the ERK kinases. LPS-induced cytokine production (RNA and protein) was also inhibited by D609. As an aggregate, these studies support the hypothesis that one way by which LPS activates the ERK kinases is via activation of PC-PLC and that activation of a PC-PLC is an important component of macrophage activation by LPS.  相似文献   

18.
Rat platelets released phospholipase A2 and lysophospholipase upon activation with thrombin or ADP. The release of phospholipases was energy-dependent and was not in parallel with that of a known lysosomal marker enzyme, N-acetyl-beta-D-glucosaminidase. The phospholipases are derived from other granules (dense granules or alpha-granules) rather than lysosomal granules of the cells. All of the activities of both phospholipases in the cell free fraction obtained from the activated platelet reaction mixture was recovered in the supernatant after centrifugation at 105,000 X g. The degree of hydrolysis of phospholipids by the phospholipase A2 followed the order: phosphatidylethanolamine (PE) greater than phosphatidylserine (PS) greater than phosphatidylcholine (PC). Phospholipase A2 shows a broad pH optimum (greater than pH 7.0) and absolutely requires Ca2+. Lysophospholipase was specific to lysophosphatidylserine (lysoPS), and neither lysophosphatidylethanolamine (lysoPE) nor lysophosphatidylcholine (lysoPC) was hydrolyzed appreciably. Both 1-acyl- and 2-acyl-lysophosphatidylserine were equally hydrolyzed. Lysophospholipase activity shows similar pH optimum to phospholipase A2. The lysophospholipase activity was lost easily at 60 degrees C. The activity was reduced by the presence of EDTA, though low but distinct activity was observed even in the presence of EDTA. Addition of Ca2+ to the mixtures restores the full activity.  相似文献   

19.
Signal transduction in esophageal and LES circular muscle contraction   总被引:2,自引:0,他引:2  
Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to M2 muscarinic receptors activating at least three intracellular phospholipases, i.e., phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD), and the high molecular weight (85 kDa) cytosolic phospholipase A2 (cPLA2) to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic M3 receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the G(q/11) type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate (PIP2), producing inositol 1,4,5-trisphosphate (IP3) and DAG. IP3 causes release of intracellular Ca++ and formation of a Ca++-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway. Signal transduction pathways responsible for maintenance of LES tone are quite distinct from those activated during contraction in response to maximally effective doses of agonists (e.g., ACh). Resting LES tone is associated with activity of a low molecular weight (approximately 14 kDa) pancreatic-like (group 1) secreted phospholipase A2 (sPLA2) and production of arachidonic acid (AA), which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to G-proteins to induce activation of PI- and PC-specific phospholipases, and production of second messengers. Resting LES tone is associated with submaximal PI hydrolysis resulting in submaximal levels of inositol trisphosphate (IP3-induced Ca++ release, and interaction with DAG to activate PKC. In an animal model of acute esophagitis, acid-induced inflammation alters the contractile pathway of ESO and LES. In LES circular muscle, after induction of experimental esophagitis, basal levels of PI hydrolysis are substantially reduced and intracellular Ca++ stores are functionally damaged, resulting in a reduction of resting tone. The reduction in intracellular Ca++ release causes a switch in the signal transduction pathway mediating contraction in response to ACh. In the normal LES, ACh causes release of Ca++ from intracellular stores and activation of a calmodulin-dependent pathway. After esophagitis, ACh-induced contraction depends on influx of extracellular Ca++, which is insufficient to activate calmodulin, and contraction is mediated by a PKC-dependent pathway. These changes are reproduced in normal LES cells by thapsigargin-induced depletion of Ca++ stores, suggesting that the amount of Ca++ available for release from intracellular stores defines the signal transduction pathway activated by a maximally effective dose of ACh.  相似文献   

20.
A comparative lipidomics approach was employed to investigate the changes in membrane phospholipids during the procession of cellular development and apoptosis of two plant cell lines, Taxus cuspidata and Taxus chinensis var. mairei. Analysis of lipids by LC/ESI/MS(n) showed more than 90 phospholipid molecular species and indicated significant differences in the abundance throughout a 3-week period. Phosphatidic acid (PA), phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) were three important lipid groups that were responsible for the discrimination between the apoptotic T. chinensis var. mairei and living T. cuspidata cells. Continuous increase of phospholipase D (PLD) activity led to PA production in apoptotic T. chinensis var. mairei cells suggesting that the PLD activation and PA formation mediated the apoptosis. Comparison of the profiles of phosphatidylbutanol (PtdBut) with those of PC or phosphatidylethanolamine (PE) indicated that PC rather than PE was the major substrate of PLD in vivo. These results suggest that the alternation of membrane phospholipids may regulate apoptosis, triggering an increase in taxol production of T. chinensis var. mairei cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号