首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutation that causes a deficiency of the lysosomal amidase, glycosylasparaginase, has been characterized in fibroblasts from three Finnish patients diagnosed with aspartylglucosaminuria (AGU). The polymerase chain reaction was used to amplify the glycosylasparaginase protein coding sequence from the three AGU patients in order to compare them to the normal sequence from a full-length human placenta cDNA clone HPAsn.6 (Fisher, K.J., Tollersrud, O.K., and Aronson, N.N., Jr. (1990) FEBS Lett. 269, 440-444). Two base changes were found to be common to all three Finnish AGU patients, a G482----A transition that results in an Arg161----Gln substitution and a G488----C transversion that causes Cys163----Ser. Detection of both point mutations from PCR-amplified cDNA or genomic DNA was facilitated by their creation of new endonuclease restriction sites. Expression studies in COS-1 cells revealed only the Cys163----Ser mutation caused a deficiency of glycosylasparaginase activity. This same substitution also prevented the normal posttranslational processing of the precursor glycosylasparaginase polypeptide into its alpha and beta subunits. Cell-free expression of the single-chain glycosylasparaginase precusor did not produce an active enzyme, suggesting that post-translational generation of subunits may be required for catalytic activity.  相似文献   

2.
Aspartylglucosaminuria (AGU, McKusick 208400) is an autosomal recessive lysosomal storage disease caused by defective degradation of Asn-linked glycoproteins. AGU mutations occur in the gene (AGA) for glycosylasparaginase, the enzyme necessary for hydrolysis of the protein oligosaccharide linkage in Asn-linked glycoprotein substrates undergoing metabolic turnover. Loss of glycosylasparaginase activity leads to accumulation of the linkage unit Asn-GlcNAc in tissue lysosomes. Storage of this fragment affects the pathophysiology of neuronal cells most severely. The patients notably suffer from decreased cognitive abilities, skeletal abnormalities and facial grotesqueness. The progress of the disease is slower than in many other lysosomal storage diseases. The patients appear normal during infancy and generally live from 25 to 45 years. A specific AGU mutation is concentrated in the Finnish population with over 200 patients. The carrier frequency in Finland has been estimated to be in the range of 2.5-3% of the population. So far there are 20 other rare family AGU alleles that have been characterized at the molecular level in the world's population. Recently, two knockout mouse models for AGU have been developed. In addition, the crystal structure of human leukocyte glycosylasparaginase has been determined and the protein has a unique alphabetabetaalpha sandwich fold shared by a newly recognized family of important enzymes called N-terminal nucleophile (Ntn) hydrolases. The nascent single-chain precursor of glycosylase araginase self-cleaves into its mature alpha- and beta-subunits, a reaction required to activate the enzyme. This interesting biochemical feature is also shared by most of the Ntn-hydrolase family of proteins. Many of the disease-causing mutations prevent proper folding and subsequent activation of the glycosylasparaginase.  相似文献   

3.
Genomic structure of human lysosomal glycosylasparaginase.   总被引:1,自引:0,他引:1  
H Park  K J Fisher  N N Aronson 《FEBS letters》1991,288(1-2):168-172
  相似文献   

4.
Aspartylglycosaminuria (AGU) is caused by deficient enzymatic activity of glycosylasparaginase (GA). The disease is characterized by accumulation of aspartylglucosamine (GlcNAc-Asn) and other glycoasparagines in tissues and body fluids of AGU patients and in an AGU mouse model. In the current study, we characterized a glycoasparagine carrying the tetrasaccharide moiety of alpha-D-Man-(1-->6)-beta-D-Man-(1-->4)-beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->N)-Asn (Man2GlcNAc2-Asn) in urine of an AGU patient and also in the tissues of the AGU mouse model. Quantitative analysis demonstrated a massive accumulation of the compound especially in nonneuronal tissues of the AGU mice, in which the levels of Man2GlcNAc2-Asn were typically 30-87% of those of GlcNAc-Asn. The highest level of Man2GlcNAc2-Asn was found in the liver, spleen, and heart tissues of the AGU mice, the respective amounts being 87%, 76%, and 57% of the GlcNAc-Asn levels. In the brain tissue of AGU mice the Man2GlcNAc2-Asn storage was only 9% of that of GlcNAc-Asn. In contrast to GlcNAc-Asn, the storage of Man2GlcNAc2-Asn markedly increased in the liver and spleen tissues of AGU mice as they grew older. Enzyme replacement therapy with glycosylasparaginase for 3.5 weeks reduced the amount of Man2GlcNAc2-Asn by 66-97% in nonneuronal tissues, but only by 13% in the brain tissue of the AGU mice. In conclusion, there is evidence for a role for storage of glycoasparagines other than aspartylglucosamine in the pathogenesis of AGU, and this possibility should be taken into consideration in the treatment of the disease.  相似文献   

5.
Aspartylglucosaminuria (AGU) is an inherited disease caused by mutations in a lysosomal amidase called aspartylglucosaminidase (AGA) or glycosylasparaginase (GA). This disorder results in an accumulation of glycoasparagines in the lysosomes of virtually all cell types, with severe clinical symptoms affecting the central nervous system, skeletal abnormalities, and connective tissue lesions. GA is synthesized as a single‐chain precursor that requires an intramolecular autoprocessing to form a mature amidase. Previously, we showed that a Canadian AGU mutation disrupts this obligatory intramolecular autoprocessing with the enzyme trapped as an inactive precursor. Here, we report biochemical and structural characterization of a model enzyme corresponding to a new American AGU allele, the T99K variant. Unlike other variants with known 3D structures, this T99K model enzyme still has autoprocessing capacity to generate a mature form. However, its amidase activity to digest glycoasparagines remains low, consistent with its association with AGU. We have determined a 1.5‐Å‐resolution structure of this new AGU model enzyme and built an enzyme–substrate complex to provide a structural basis to analyze the negative effects of the T99K point mutation on KM and kcat of the amidase. It appears that a “molecular clamp” capable of fixing local disorders at the dimer interface might be able to rescue the deficiency of this new AGU variant.  相似文献   

6.
7.
The molecular basis of a dramatically decreased steady state level of beta-hexosaminidase beta subunit mRNA in a patient with juvenile Sandhoff disease was investigated. Nucleotide sequence analysis of the HEXB gene coding for the beta subunit revealed two single base substitutions, one in exon 2 (A to G, a known polymorphism) and the other in exon 11 (C to T). Analysis of the beta subunit mRNA species demonstrated activation of a cryptic splice site in exon 11 as well as skipping of the exon. A transfection assay using a chimeric gene containing intron 10 flanked by cDNA sequences carrying the mutation confirmed that the single base substitution located at position 8 of exon 11 inhibits the selection of the normal 3' splice site. The results demonstrate a new type of exon mutation affecting 3' splice site selection.  相似文献   

8.
Most splice-site mutations lead to a limited array of products, including exon skipping, use of cryptic splice-acceptor or -donor sites, and intron inclusion. At the intron 8 splice-donor site of the COL1A1 gene, we identified a G+1-->A transition that resulted in the production of several splice products from the mutant allele. These included one in which the upstream exon 7 was extended by 96 nt, others in which either intron 8 or introns 7 and 8 were retained, one in which exon 8 was skipped, and one that used a cryptic donor site in exon 8. To determine the mechanism by which exon-7 redefinition might occur, we examined the order of intron removal in the region of the mutation by using intron/exon primer pairs to amplify regions of the precursor nuclear mRNA between exon 5 and exon 10. Removal of introns 5, 6, and 9 was rapid. Removal of intron 8 usually preceded removal of intron 7 in the normal gene, although, in a small proportion of copies, the order was reversed. The proportion of abnormal products suggested that exon 7 redefinition, intron 7 plus intron 8 inclusion, and exon 8 skipping all represented products of the impaired rapid pathway, whereas the intron-8 inclusion product resulted from use of the slow intron 7-first pathway. The very low-abundance cryptic exon 8 donor site product could have arisen from either pathway. These results suggest that there is commitment of the pre-mRNA to the two pathways, independent of the presence of the mutation, and that the order and rate of intron removal are important determinants of the outcome of splice-site mutations and may explain some unusual alterations.  相似文献   

9.
10.
Effect of 5'' splice site mutations on splicing of the preceding intron.   总被引:27,自引:21,他引:27       下载免费PDF全文
Three exon constructs containing identical intron and exon sequences were mutated at the 5' splice site beginning intron 2 and assayed for the effect of the mutation on splicing of the upstream intron in vitro. Alteration of two or six bases within the 5' splice site reduced removal of intron 1 at least 20-fold, as determined by quantitation of either spliced product or released lariat RNA. The prominent product was skip splicing of exon 1 to exon 3. Examination of complex formation indicated that mutation of the 5' splice site terminating exon 2 depressed the ability of precursor RNAs containing just the affected exon to direct assembly in vitro. These results suggest that mutation at the end of an internal exon inhibits the ability of the exon to be recognized by splicing factors. A comparison of the known vertebrate 5' splice site mutations in which the mutation resides at the end of an internal exon indicated that exon skipping is the preferred phenotype for this type of mutation, in agreement with the in vitro observation reported here. Inhibition of splicing by mutation at the distal and of the exon supports the suggestion that exons, rather than splice sites, are the recognition units for assembly of the spliceosome.  相似文献   

11.
Exon skipping that accompanies exonic mutation might be caused by an effect of the mutation on pre-mRNA secondary structure. Previous attempts to associate predicted secondary structure of pre-mRNA with exon skipping have been hindered by either a small number of available mutations, sub-optimal structures, or weak effects on exon skipping. This report identifies more extensive sets of mutations from the human and hamster Hprt gene whose association with exon skipping is clear. Optimal secondary structures of the wild-type and mutant pre-mRNA surrounding each exon were predicted by energy minimization and were compared by energy dot plots. A significant association was found between the occurrence of exon skipping and the disruption of a stem containing the acceptor site consensus sequences of exon 8 of the human Hprt gene. However, no change in secondary structure was associated with skipping of exon 4 of the hamster Hprt gene. Using updated energy parameters we found a different structure than that previously reported for exon 2 of the hamster Hprt gene. In contrast to the previously reported structure, no significant association was found between predicted structural changes and skipping of exon 2. For all three Hprt exons studied, there was a significantly greater number of deoxythymidine substitutions among mutations accompanied by exon skipping than among mutations without exon skipping. For exon 8, deoxythymidine substitution was also associated with structural changes in the stem containing the acceptor site consensus sequences. For exon 51 of the human fibrillin gene, structural differences from wild type were predicted for all four mutations accompanied by exon skipping that were not were predicted for a single mutation without exon skipping. Our results suggest that both primary and secondary pre-mRNA structure contribute to definition of Hprt exons, which may involve exonic splicing enhancers.  相似文献   

12.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

13.
We have isolated a 2.1 kb cDNA which encodes human aspartylglucosaminidase (AGA, E.C. 3.5.1.26). The activity of this lysosomal enzyme is deficient in aspartylglucosaminuria (AGU), a recessively inherited lysosomal accumulation disease resulting in severe mental retardation. The polypeptide chain deduced from the AGA cDNA consists of 346 amino acids, has two potential N-glycosylation sites and 11 cysteine residues. Transient expression of this cDNA in COS-1 cells resulted in increased expression of immunoprecipitable AGA protein. Direct sequencing of amplified AGA cDNA from an AGU patient revealed a G----C transition resulting in the substitution of cysteine 163 with serine. This mutation was subsequently found in all the 20 analyzed Finnish AGU patients, in the heterozygous form in all 53 carriers and in none of 67 control individuals, suggesting that it represents the major AGU causing mutation enriched in this isolated population. Since the mutation produces a change in the predicted flexibility of the AGA polypeptide chain and removes an intramolecular S-S bridge, it most probably explains the deficient enzyme activity found in cells and tissues of AGU patients.  相似文献   

14.
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.  相似文献   

15.
Aspartylglucosaminuria (AGU) is a recessively inherited lysosomal disease caused by inadequate aspartylglucosaminidase (AGA) activity. The disease is prevalent in the genetically isolated Finnish population. We have used a new method, solid-phase minisequencing, to determine the frequency of two missense mutations in the AGA gene in this population. In samples from 70% of the Finnish AGU families, we found that the two nucleotide changes were always associated, and they were identified in 98% of the AGU alleles analyzed. Thus, the high prevalence of AGU in the Finnish population is the consequence of a founder effect of one ancient mutation. The identification of asymptomatic carriers by the minisequencing test proved to be unequivocal. The method also allowed quantification of a mutated nucleotide sequence present in less than 1% of a sample. The frequency of AGU carriers in this population was 1/36 when estimated by quantifying the mutated AGU allele in a pooled leukocyte sample from 1350 normal Finnish individuals.  相似文献   

16.
The lipoprotein lipase (LPL) enzyme plays a major role in lipid metabolism, primarily by regulating the catabolism of triglyceride (TG)-rich lipoprotein particles. The gene for LPL is an important candidate for affecting the risk of atherlosclerosis in the general population. Previously, we have shown that the HindIII polymorphism in intron 8 of the LPL gene is associated with plasma TG and HDL-cholesterol variation in Hispanics and non-Hispanic whites (NHWs). However, this polymorphism is located in an intron and hence may be in linkage disequilibrium with a functional mutation in the coding region or intron-exon junctions of the LPL gene. The aim of this study was to initially screen the LPL coding region and the intron-exon junctions by single-strand conformation polymorphism (SSCP) analysis for mutation detection in a group of 86 individuals expressing the phenotype of high TG/low HDL, followed by association studies in a population-based sample of 1,014 Hispanics and NHWs. Four sequence variations were identified by SSCP and DNA sequencing in the coding region of the gene, including two missense mutations (D9N in exon 2 and N291S in exon 6), one samesense mutation (V108V in exon 3), and one nonsense mutation (S447X in exon 9). Multiple regression analyses, including these four mutations and the HindIII polymorphic site, indicate that the association of the HindIII site with plasma TG (P=0.001 in NHWs and P=0.002 in Hispanics) and HDL-cholesterol (P=0.007 in NHWs and P=0.127 in Hispanics) is independent of all other LPL variable sites examined. These observations reinforce the concept that the intronic 8 HindIII site is functional by itself and provide a strong rationale for future comprehensive functional studies to delineate its biological significance.  相似文献   

17.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

18.
Characterization of exon skipping mutants of the COP1 gene from Arabidopsis   总被引:4,自引:1,他引:3  
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1–1 was a G→A change 4 nt upstream from the 3′ splice site of intron 5, while the mutation in cop1–2 was a G→A at the first nucleotide of intron 6, abolishing the conserved G within the 5′ splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1–8 was G→A in the final nucleotide of intron 10 abolishing the conserved G within the 3′ splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.  相似文献   

19.
Using a protein truncation assay, we have identified a new mutation in the neurofibromatosis type 1 (NF1) gene that causes a severe defect in NF1 pre-mRNA splicing. The mutation, which consists of a G to A transition at position +1 of the 5' splice site of exon 12a, is associated with the loss of both exons 11 and 12a in the NF1 mRNA. Through the use of in vivo and in vitro splicing assays, we show that the mutation inactivates the 5' splice site of exon 12a, and prevents the definition of exon 12a, a process that is normally required to stimulate the weak 3' splice site of exon 12a. Because the 5' splice site mutation weakens the interaction of splicing factors with the 3' splice site of exon 12a, we propose that exon 11/exon 12a splicing is also compromised, leading to the exclusion of both exons 11 and 12a. Our results provide in vivo support for the importance of the exon definition model during NF1 splicing, and suggest that the NF1 region containing exons 11 and 12a plays an important role in the activity of neurofibromin.  相似文献   

20.
Duchenne muscular dystrophy (DMD) patients with mutations that disrupt the translational reading frame produce little or no dystrophin. Two exceptions are the deletion of exons 3-7 and the occurrence of rare dystrophin-positive fibers (revertant fibers) in muscle of DMD patients. Antibodies directed against the amino-terminus and the 5' end of exon 8 did not detect dystrophin in muscle from patients who have a deletion of exons 3-7. However, in all cases, dystrophin was detected with an antibody directed against the 3' end of exon 8. The most likely method of dystrophin production in these cases is initiation at a new start codon in exon 8. We also studied two patients who have revertant fibers: one had an inherited duplication of exons 5-7, which, on immunostaining, showed two types of revertant fibers; and the second patient had a 2-bp nonsense mutation in exon 51, which creates a cryptic splice site. An in-frame mRNA that uses this splice site in exon 51 was detected. Immunostaining demonstrated the presence of the 3' end of exon 51, which is in agreement with the use of this mRNA in revertant fibers. The most likely method of dystrophin production in these fibers is a second mutation that restores the reading frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号