首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senegalese sole is known to be a species with pronounced nocturnal feeding behaviour. However, as for most fish species, there is a lack of knowledge concerning the influence of such biological rhythm on metabolic rate. The aim of this study was to determine whether individual variation in routine and fed metabolic rate was affected by daily light-dark rhythms in juveniles of Senegalese sole. The individual oxygen consumption measurements in Senegalese sole juveniles were determined by flow-through respirometry, at fasted conditions and after the fish were fed a single meal, the meal time started at 0930 h and fish fed ad libitum for 30 min. The measurements were made during 22 h, of which 8 h was in the light and 14 h in the dark, and started immediately after transfer to the respiratory chambers at 1100 h. The results suggest an influence of light-dark cycles in routine metabolism. It was observed that oxygen consumption increased during the dark phase in fasted fish (FAST) but was higher during the light phase in fed fish (FEED). However, when feed is provided during the light phase, juveniles are capable of shifting oxygen consumption rhythms to respond to the energetic demands of digestion and growth. These results suggest that routine metabolism varies according to the species natural habits as Senegalese sole is known to be nocturnal. The findings of this study underline the importance of understanding the biological rhythms of the species under study before metabolic data are interpreted.  相似文献   

2.
Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod (Gadus morhua), an economically important fish species. We focus on changes in the temperature‐dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985–2004 and 2081–2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature‐ and oxygen‐dependent decline in routine aerobic scope at southern distribution limits.  相似文献   

3.
The amount of fat and protein used by young Tilapia rendalli during starvation can be quantitatively assessed and correlated to the condition of the fish. It was shown that fish in good condition used fat in preference to protein during catabolism, irrespective of the time period of starvation, but this rapidly reversed as condition declined and fish in medium and poor condition utilised more protein than fat to maintain routine metabolism. The amount of energy required during routine metabolism was not affected by the ratio of fat to protein used and a mean energy requirement for these fish (varying between 40 and 60 g in mass) was estimated as 45.03 J g-1d-1 at 23°C. This estimate of routine metabolic energy requirement can be equated to oxygen consumption using an oxy-energy coefficient of 13.68 J mg O2-1.  相似文献   

4.
栉孔扇贝耗氧率和排氨率的研究   总被引:36,自引:0,他引:36  
1999年 4~ 6月 ,采用室内实验生态学方法对栉孔扇贝的耗氧率和排氨率进行了研究 .结果表明 ,在适宜的温度范围内 ,栉孔扇贝的耗氧率和排氨率均与温度成正比 ,而与体重呈负相关关系 .在实验室温度 (8~ 2 8℃ )条件下 ,栉孔扇贝的耗氧率为 0 .48~ 9.0 9mg·g-1·h-1,排氨率为 0 .0 5~ 1 0 1mg·g-1·h-1.其中耗氧率在 2 3℃时达到最高值 ,2 8℃时开始下降 ,而排氨率则呈持续升高趋势 .栉孔扇贝的日常代谢明显高于标准代谢 ,耗氧率和排氨率平均值分别提高约 35 .8%和 75 .9% .  相似文献   

5.
Measurements of active, standard and routine oxygen consumption were made for 207 Utah chub at 6°, 9°, 12°, 18° and 22° C; and 123 speckled dace at 4°, 8°, 12° and 18° C. These were expressed as mathematical functions of water temperature and size of the fish. The mean slopes of loge oxygen consumption (mg O2/h) and loge wet weight (g) were 0.771, 0.526, and 0.619 for active, standard, and routine rates respectively for Utah chub, and 0.943, 0.486, and 0.683 respectively for speckled dace.  相似文献   

6.
  • 1.1. After step-like increases in salinity the shrimps exhibit the smallest increase in oxygen consumption in the lower salinity range. At higher salinities the shrimps show longer recovery times and greater increases in the metabolic rate after salinity shock.
  • 2.2. In steady-state experiments, the shrimps display the lowest oxygen consumption rates near the isosmotic point. The lowest metabolic rates occur at salinities of 3‰ and 10‰ At salinities of 20‰ and above the rate of metabolism increases by 20–30%.
  • 3.3. The calculated osmoregulatory work for animals in fresh water amounts to only 2.7% of routine metabolism and drops to 1.1% for shrimps in 3‰ and 0.7% in 5‰ salinity.
  • 4.4. Locomotory activity in the form of position change was not responsible for the increased oxygen consumption of the animals after salinity shocks. A “tentative swimming activity” by fast and frequent beating of the pleopods without position change may be an important factor in the increase of metabolic rates.
  • 5.5. In its temperature response, the brackish water population has a higher metabolic rate than the freshwater one. Between 5 and 35°C Q 10-values range from 4.01 to 1.37.
  相似文献   

7.
Juvenile gray snapper (Lutjanus griseus) occupy a wide range of estuarine and nearshore habitats that differ in physico-chemical properties. To quantify the energetic cost of inhabiting these different habitats, routine metabolism of individual gray snapper was measured in the laboratory at 20 combinations of temperature (18, 23, 28, and 33 °C) and salinity (5, 15, 25, 35, and 45 psu). An open, flow-through respirometer was used, enabling trials to be run for long periods (∼16 h), while maintaining water quality (dissolved O2>70% saturation), and providing fish sufficient time to habituate to the chambers undisturbed. Video recordings of fish in the respirometer chambers were analyzed to quantify the spontaneous activity rate of individuals. Analysis of covariance, using fish weight and mean activity rate as covariates, indicated significant temperature and salinity effects on oxygen consumption. Oxygen consumption was significantly higher at high salinities, and the salinity effect was temperature dependent. A polynomial equation describing oxygen consumption as a function of temperature and salinity indicated the increase due to salinity from 5 to 45 psu at high temperatures (30-33 °C) was equivalent to a 3 °C increase in temperature. At intermediate temperatures (24-26 °C), the increase due to salinity from 5 to 45 psu was less dramatic, equivalent to a 2 °C increase in temperature. At the lowest temperatures (18 °C), salinity did not have a significant effect on oxygen consumption. The increased metabolic costs in high salinities (∼7% at the high temperature) represent a significant energy cost for juveniles, that would need to be balanced by lower predation risk or greater food availability to result in similar juvenile production compared to lower salinity environments.  相似文献   

8.
When water temperature was increased from 12 to 27°C at a rate of 2°C h−1, oxygen consumption of rainbow trout Oncorhynchus mykiss was correlated strongly with both heart rate and blood oxygen extraction but the relationship with cardiac output was variable and weak. On the other hand, when water temperature was decreased from 21 to 12°C at a rate of 0·5°C h−1, oxygen consumption was correlated with both heart rate and cardiac output but not with blood oxygen extraction. When fish were forced to swim increasingly faster, heart rate, cardiac output and blood oxygen extraction all correlated positively with oxygen consumption. For both cardiac output and heart rate, the slope of the regression line with oxygen consumption was elevated significantly more when the fish were forced to swim at increasingly higher swimming speeds than when water temperature was increased or decreased. The variation of the regression lines between cardiac output and oxygen consumption indicated that cardiac output presents few advantages over heart rate as a predictor of metabolic rate.  相似文献   

9.
1. Temperature governs most physiological processes in animals. Ectotherms behaviourally thermoregulate by selecting habitats with temperatures regulating their body temperature for optimal physiological functioning. However, ectotherms can experience temperature extremes forcing the organisms to seek temperature refuge. 2. Fish actively avoid potentially lethal temperatures by moving to cool-water sites created by inflowing tributaries and groundwater seeps. Juvenile Atlantic salmon (Salmo salar) of different age classes exhibit different behavioural responses to elevated temperatures (>23 °C). Yearling (1+) and 2-year-old (2+) Atlantic salmon often cease feeding, abandon territorial behaviour and swim continuously in aggregations in cool-water sites; whereas young-of-the-year (0+) fish continue defending territories and foraging. 3. This study determined whether the behavioural shift in older individuals (2+) occurred when basal metabolic rate, driven by increasing water temperature, reached the maximum metabolic rate such that anaerobic pathways were recruited to provide energy to support vital processes. Behaviour (feeding and stress responses), oxygen consumption, muscle lactate and glycogen, and circulating blood lactate and glucose concentrations were measured in wild 0+ and 2+ Atlantic salmon acclimated to water temperatures between 16 and 28 °C. 4. Results indicate that oxygen consumption of the 2+ fish increased with temperature and reached a plateau at 24 °C, a temperature that corresponded to cessation of feeding and a significant increase in muscle and blood lactate levels. By contrast, oxygen consumption in 0+ fish did not reach a plateau, feeding continued and muscle lactate did not increase, even at the highest temperatures tested (28 °C). 5. To conclude, the experiment demonstrated that the 0+ and 2+ fish had different physiological responses to the elevated water temperatures. The results suggest that wild 2+ Atlantic salmon employ behavioural responses (e.g. movement to cool-water sites) at elevated temperatures in an effort to mitigate physiological imbalances associated with an inability to support basal metabolism through aerobic metabolic processes.  相似文献   

10.
Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption values, or standard metabolic rate, and hence it is concluded that that metabolic cold adaptation in the traditional sense is an artefact.  相似文献   

11.
The optomotor reaction of juvenile Coregonus schinzipalea Val. et Cuv. and Salmo salar L. was utilized to develop a circular tube metabolism chamber to measure oxygen consumption and ammonia excretion as a function of swimming speed. The metabolism chamber with a constant water flow assured the maintenance of stable conditions. The unidirectional movement of fish was measured in a circular tube with a single narrowing. The relationships between the swimming speed and oxygen consumption or ammonia excretion described by exponential equations allowed the extrapolation towards the standard metabolism, i.e., zero swimming speed. For a juvenile coregonid (0.1–0.15 g individual weight, 2.6–2.8 cm total length) standard metabolism at 14° C was estimated as 0.65 mg02 g−1 h−1 and 17.3 μg N(NH3)g−1 h−1, whereas for juvenile salmon (136mg individual weight) respective values at 22° C were 0.047mg02g−1h−1 and 0.61 μg N(NH3)g−1 h−1. The feeding test with juvenile salmon was also performed in this circular chamber, and in both energy and nitrogen budgets after a meal the partitioning could be precisely attributed to standard metabolism, active metabolism and specific dynamic action (in the case of oxygen consumption) or postprandial nitrogen increase.
The new metabolism chamber allowed the relationship between metabolism and swimming velocity of juvenile fish with developed rheotactic response. It could be used with adult fish for similar purposes.  相似文献   

12.
We measured the metabolic rates as a direct estimate of energy expenditure of individual Neolamprologus pulcher, a cooperatively breeding cichlid fish, when resting and when performing agonistic, submissive or digging behaviours in a respirometer. Standard and routine metabolic rates increased linearly with body mass (range 0.9–8.4 g) when plotted on a doubly logarithmic scale (linear regression equations: standard metabolic rate: log individual oxygen consumption rate = 0.65 + 0.86 log body mass; routine metabolic rate: log individual oxygen consumption rate = 0.75 + 0.86 log body mass). Routine metabolic rates were, on average, 30% higher than standard metabolic rates. Submissive and agonistic behaviours raised routine metabolic rates by factors of 3.3 and 3.9, respectively. Digging resulted in a 6.1-fold increase of routine metabolic rates. Differences in metabolic rates between active and resting rates were statistically significant. However, those between the three behaviours were not. Mean opercular beat frequencies correlated significantly with routine metabolic rates and with metabolic rates when performing specific behaviours, which offers methodological prospects for field measurements. In N. pulcher, the high energy expenditure for submissive behaviour may indicate that this is a reliable signal. The considerable energy expenditure involved in territory defence suggests that these costs should be considered in addition to risk in cost-benefit analyses. This is the first study in which the energy expenditures of specific social and territory maintenance behaviours of individual fish were measured directly by respirometry and within the usual social setting of the fish. Accepted: 20 February 1998  相似文献   

13.
Muscular activity patterns in red and white muscles linked to oxygen consumption were studied during critical swimming tests in the sea bass (Dicentrarchus labrax Linnaeus 1758). The species is one of the most important for Mediterranean Sea aquaculture. A sigmoid model was used to fit both the oxygen consumption and red muscle activity while the white muscle activity pattern was described by an exponential model. Red muscle reaches an activation plateau close to critical swimming speed mostly due to the oxygen diffusion velocity in tissues. The exponential activation of white muscle appears to be linked to short and sudden periods of great energy need to cope with adverse conditions such as predation and escape. Both oxygen consumption and muscular activity were found to be size dependent. The bioenergetics of sea bass was modelled based on fish mass and swimming speed to predict the minimum and maximum speed as well as the mass-specific active metabolic rate and standard metabolic rate. An important finding was that contrary to other well-known species, swimming at subcritical speeds in sea bass involves both red and white muscle in different proportions.  相似文献   

14.
Food consumption, standard metabolism, and growth of juvenile snakehead, Channa striatus, a cannibalistic and air-breathing fish were measured at 24–26 °C under controlled laboratory condition. Snakehead weighing 3.2–29.5 g were evaluated, and were fed smaller snakehead. Based on our observations, we determined bioenergetics relationships between specific food consumption, metabolic rates, and body weight. These values, along with other published parameter values allowed us to construct a bioenergetics model for snakehead. We then verified our model with growth and food consumption measurements from an independent feeding trial. Predicted fish growth closely matched observed growth. Our model underestimated cumulative food consumption when a constant activity value was used, but consumption estimates improved when we used non-constant activity values (1-5 times of standard metabolism). Predicted fish maintenance ration was 1.7% of body weight per day. Food conversion efficiency was greatest (0.59) when fed 2% body weight daily, but declined when daily consumption exceeded 6% body weight. This model provides a useful approach for assessing food requirements of snakehead under controlled condition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucrit) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO2) reached their maximum values at swimming speeds near the Ucrit for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO2 kg?1 hr?1), 412.85 ± 216.34 (mgO2 kg?1 hr?1) and 1,095.73 ± 52.50 (mgO2 kg?1 hr?1), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.  相似文献   

16.
Oxygen demand generally increases in ectotherms as temperature rises in order to sustain oxidative phosphorylation by mitochondria. The thermal plasticity of ectotherm metabolism, such as that of fishes, dictates a species survival and is of importance to understand within an era of warming climates. Within this study the whole animal O2 consumption rate of a common New Zealand intertidal triplefin fish, Forsterygion lapillum, was investigated at different acclimation temperatures (15, 18, 21, 24 or 25 °C) as a commonly used indicator of metabolic performance. In addition, the mitochondria within permeabilised skeletal muscle fibres of fish acclimated to a moderate temperature (18 °C Cool acclimation group—CA) and a warm temperature (24 °C. Warm acclimation group—WA) were also tested at 18, 24 and 25 °C in different states of coupling and with different substrates. These two levels of analysis were carried out to test whether any peak in whole animal metabolism reflected the respiratory performance of mitochondria from skeletal muscle representing the bulk of metabolic tissue. While standard metabolic rate (SMR- an indicator of total maintenance metabolism) and maximal metabolic rate ( \(\dot{M}\) O2 max) both generally increased with temperature, aerobic metabolic scope (AMS) was maximal at 24 °C, giving the impression that whole animal (metabolic) performance was optimised at a surprisingly high temperature. Mitochondrial oxygen flux also increased with increasing assay temperature but WA fish showed a lowered response to temperature in high flux states, such as those of oxidative phosphorylation and in chemically uncoupled states of respiration. The thermal stability of mitochondria from WA fish was also noticeably greater than CA fish at 25 °C. However, the predicted contribution of respirational flux to ATP synthesis remained the same in both groups and WA fish showed higher anaerobic activity as a result of high muscle lactate loads in both rested and exhausted states. CA fish had a comparably lower level of resting lactate and took 30 % longer to fatigue than WA fish. Despite some apparent acclimation capacity of skeletal muscle mitochondria, the ATP synthesis capacity of this species is constrained at high temperatures, and that a greater fraction of metabolism in skeletal muscle appears to be supported anaerobically at higher temperatures. The AMS peak at 24 °C does not therefore represent utilisation efficiency of oxygen but, rather, the temperature where scope for oxygen flow is greatest.  相似文献   

17.
Oxygen uptake of growth hormone transgenic coho salmon Oncorhynchus kisutch was measured in individual fish with a closed-system respirometer and was compared with that of similar-sized non-transgenic control coho salmon during starvation and when fed a fixed ration or to satiation. Transgenic and control fish did not differ in their standard oxygen uptake after 4 days of starvation, although control fish had a higher routine oxygen uptake, scope for spontaneous activity and initial acclimation oxygen uptake. During feeding, transgenic fish ate significantly more than control fish, and had an overall oxygen uptake that was 1·7 times greater than control fish. When fish that had eaten the same per cent body mass were compared, transgenic fish had an oxygen uptake that was 1·4 times greater than control fish. Differences in oxygen uptake in growth hormone transgenic coho salmon and non-transgenic fish appear to be due to the effects of feeding, acclimation and activity level, and not to a difference in basal metabolism.  相似文献   

18.
Abstract Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.  相似文献   

19.
Although we are beginning to understand the conditions in which monogamy is favored over a more promiscuous lifestyle, little is known about the proximate effects of monogamous pair bonding, and subsequent reproduction, on general metabolism. I determined the effects of these factors on the metabolic rates of dwarf seahorses (Hippocampus zosterae), recognized for their monogamous lifestyle and unique male care of offspring, in a sealed brood pouch where embryos develop until birth. Resting routine oxygen consumption rates were measured in newly-paired and reproductive adults using a continuous flow respirometer, and then compared to metabolic rates of sexually-isolated fish. Sex differences were observed in the relationship between log(10)mass and log(10)oxygen consumption, with pair-bonded females exhibiting a significantly higher slope than either pair-bonded males, or sexually-isolated fish. Mass-specific metabolic rates in sexually-isolated fish were 15% higher than in pair-bonded fish, indicating that social conditions can strongly influence metabolic rate. Specific metabolic rates only differed by gender during male pregnancy, when male metabolic rate increased from 10 to 52% over pre-gravid levels. A male's developing brood only explained 4-31% of this increase, suggesting that increased metabolic demands on fathers accounts for most of the increase in metabolic rate during gestation. This study suggests that pair bonding can strongly affect the general metabolism of organisms, with potential differences between males and females that increase with age.  相似文献   

20.
The present study investigated the metabolic response of young ocean pout Zoarces americanus to temperature acclimation (3 v. 11° C), and to acute changes in water temperature from 3 to 17° C. The Q 10 value for standard metabolic rate between acclimation temperatures was 5·3, warm-acclimated fish displayed higher rates of oxygen uptake at all temperatures during the acute thermal challenge, and changes in whole-body citrate synthase activity were qualitatively similar to those seen for metabolism. These results indicate that, in contrast to temperate species, young ocean pout from Newfoundland do not show thermal compensation in response to long-term temperature changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号