首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The freshwater macrophyte, Ottelia alismoides, is a bicarbonate user performing C4 photosynthesis in the light, and crassulacean acid metabolism (CAM) when acclimated to low CO2. The regulation of the three mechanisms by CO2 concentration was studied in juvenile and mature leaves. For mature leaves, the ratios of phosphoenolpyruvate carboxylase (PEPC) to ribulose-bisphosphate carboxylase/oxygenase (Rubisco) are in the range of that of C4 plants regardless of CO2 concentration (1.5–2.5 at low CO2, 1.8–3.4 at high CO2). In contrast, results for juvenile leaves suggest that C4 is facultative and only present under low CO2. pH-drift experiments showed that both juvenile and mature leaves can use bicarbonate irrespective of CO2 concentration, but mature leaves have a significantly greater carbon-extracting ability than juvenile leaves at low CO2. At high CO2, neither juvenile nor mature leaves perform CAM as indicated by lack of diurnal acid fluctuation. However, CAM was present at low CO2, though the fluctuation of titratable acidity in juvenile leaves (15–17 µequiv g?1 FW) was slightly but significantly lower than in mature leaves (19–25 µequiv g?1 FW), implying that the capacity to perform CAM increases as leaves mature. The increased CAM activity is associated with elevated PEPC activity and large diel changes in starch content. These results show that in O. alismoides, carbon-dioxide concentrating mechanisms are more effective in mature compared to juvenile leaves, and C4 is facultative in juvenile leaves but constitutive in mature leaves.  相似文献   

2.
Water deficit is one of the key factors that limits the carbon (C) assimilation and productivity of plants. The effect of variable water deficit on recently root-derived bicarbonate assimilation in Camptotheca acuminate seedlings was investigated. Three-month-old seedlings were subjected to three water regimes, well-watered (WW), moderate stress (MS), and severe stress (SS) induced by polyethyleneglycol, in conjunction with relatively high (H) and low (L) natural 13C-abundance of NaHCO3-labeled treatments in hydroponics for 14 days. The δ13C of the newly expanded leaves in H were generally more enriched in heavy isotopes than were those in L, indicative of the involvement of bicarbonate in aboveground tissues. The C isotope fractionation of newly expanded leaves relative to air (?13Cair-leaves) ranged from 17.78 to 21.78‰ among the treatments. The ?13Cair-leaves under the MS and SS treatments in H were both more negative than was that in L. A linear regression between Ci/Ca and ?13Cair-leaves in both L and H were different from the theoretical regression. On the basis of the two end-member mixing model, the proportion of fixed CO2 supplied from bicarbonate contributing to the total photosynthetically inorganic C assimilation were 10.34, 20.05 and 16.60% under the WW, MS, and SS treatments, respectively. These results indicated that the increase in water deficit decreased the atmospheric CO2 gain but triggered a compensatory use of bicarbonate in C. acuminate seedlings.  相似文献   

3.
Camellia reticulata is a well-known woody ornamental species endemic to Southwest China. It represents a polyploid complex with diploids, allotetraploids, and allohexaploids. The parentage of the allotetraploids and allohexaploids has been reported by genomic in situ hybridization, but the maternal parents still remain unknown. In this study, sequences of the chloroplast rpl16 intron of 105 cultivars of C. reticulata and 7 congeneric species were used to infer the maternal origin of the allopolyploids. The results showed that (1) the allotetraploids were derived from C. pitardii as the maternal parental species and the diploid C. reticulata as the paternal parental species; (2) the allohexaploid C. reticulata was derived from the allotetraploid C. reticulata as the maternal parent and C. saluenensis as the paternal parent; and (3) the C. reticulata cultivars were derived from hexaploid C. reticulata as the maternal parents. These results indicated that C. pitardii, the allotetraploid and allohexaploid C. reticulata may serve as good potential maternal parents for the cross breeding of Camellia.  相似文献   

4.
5.
Abiotic drivers of environmental stress have been found to induce CAM expression (nocturnal carboxylation) in facultative CAM species such as Mesembryanthemum crystallinum. The role played by biotic factors such as competition with non-CAM species in affecting CAM expression, however, remains largely understudied. This research investigated the effects of salt and water conditions on the competition between M. crystallinum and the C3 grass Bromus mollis with which it is found to coexist in California’s coastal grasslands. We also investigated the extent to which CAM expression in M. crystallinum was affected by the intensity of the competition with B. mollis. We found that M. crystallinum had a competitive advantage over B. mollis in drought and saline conditions, while B. mollis exerted strong competitive effects on M. crystallinum in access to light and soil nutrients in high water conditions. This strong competitive effect even outweighed the favorable effects of salt or water additions in increasing the biomass and productivity of M. crystallinum in mixture. Regardless of salt conditions, M. crystallinum did not switch to CAM photosynthesis in response to this strong competitive effect from B. mollis. Disturbance (i.e., grass cutting) reduced the competitive pressure by B. mollis and allowed for CAM expression in M. crystallinum when it was grown mixed with B. mollis. We suggest that moderate competition with other functional groups can enhance CAM expression in M. crystallinum, thereby affecting its plasticity and ability to cope with biological stress.  相似文献   

6.

Background

Cha-hua (Camellia reticulata) is one of China’s traditional ornamental flowers developed by the local people of Yunnan Province. Today, more than 500 cultivars and hybrids are recognized. Many ancient camellia trees still survive and are managed by local peopl. A few records on cha-hua culture exist, but no studies expound the interaction between C. reticulata and traditional culture of ethnic groups. The contribution of traditional culture of different nationalities and regions to the diversity of Camellia reticulate is discussed.

Methods

Ethnobotanical surveys were conducted throughout Central and Western Yunnan to investigate and document the traditional culture related to Camellia reticulata. Five sites were selected to carry out the field investigation. Information was collected using participatory observation, semi-structured interviews, key informant interviews, focus group discussions, and participatory rural appraisal (PRA).

Results

Most of the ancient camellia trees were preserved or saved in the courtyards of old buildings and cultural or religious sites. Religion-associated culture plays an important role in C. reticulata protection. In every site we investigated, we found extensive traditional culture on C. reticulata and its management. These traditional cultures have not only protected the germplasm resources of C. reticulata, but also improved the diversity of Camellia cultivars.

Conclusions

There are abundant and diverse genetic resources of cha-hua, Camellia reticulata in Yunnan. Cha-hua is not only an ornamental flower but also has been endowed with rich spiritual connotation. The influence of traditional culture had improved the introduction and domestication of wild plants, breeding and selection of different varieties, and the propagation and dissemination of the tree in Yunnan. However, either some ancient cha-hua trees or their associated traditional culture are facing various threats. The old cha-hua trees and the ethnic camellia culture should be respected and protected since they have made great contributions in the history, and will make more contributions in the future.
  相似文献   

7.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

8.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

9.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

10.
Increased atmospheric CO2 and gamma irradiation have a significant impact on the plant photosynthetic apparatus and organic compound production. In this study, we evaluated the effect of elevated CO2 on the photosynthetic efficiency and production of defensive secondary metabolites (flavonoids) induced by gamma irradiation as a physical elicitor in Centella asiatica. Irradiated and non-irradiated 10-week-old plants of C. asiatica were exposed to 400 and 800 μmol mol?1 of atmospheric CO2 in growth chambers for 2 h every day until six weeks. A CO2-enriched atmosphere initially improved the photosynthetic efficiency and ameliorated the detrimental impact of gamma irradiation on the photosynthetic apparatus, increasing carbon allocation into the flavonoid pathway. Elevated CO2 combined with gamma irradiation resulted in the highest concentration of flavonoids in C. asiatica tissues compared with the other treatments. There was an enhancement in rutin (2.49 fold), naringin (2.15 fold), fisetin (4.07 fold), and morin (4.62 fold) with rising CO2 concentrations from 400 to 800 μmol mol?1 in the irradiated plants. With increasing CO2 concentration, the compensation point and the respiration declined, whereas the apparent quantum yield and the maximum net photosynthesis (A max) rate increased. The efficiency of photosystem II (PSII) was improved in the irradiated plants grown under high concentrations of CO2. The total carbohydrate concentration reached the maximum value at the highest level of CO2, followed by gamma irradiation combined with the highest level of CO2. Irradiated plants of C. asiatica grown under elevated CO2 could be superior to non-irradiated plants due to increased carbon availability both for the flavonoid biosynthesis and for the photosynthetic pathway.  相似文献   

11.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

12.
The classical definition of mesophyll conductance (g m) represents an apparent parameter (g m,app) as it places (photo)respired CO2 at the same compartment where the carboxylation by Rubisco takes place. Recently, Tholen and co-workers developed a framework, in which g m better describes a physical diffusional parameter (g m,dif). They partitioned mesophyll resistance (r m,dif = 1/g m,dif) into two components, cell wall and plasmalemma resistance (r wp) and chloroplast resistance (r ch), and showed that g m,app is sensitive to the ratio of photorespiratory (F) and respiratory (R d) CO2 release to net CO2 uptake (A): g m,app = g m,dif/[1?+?ω(F?+?R d)/A], where ω is the fraction of r ch in r m,dif. We herein extend the framework further by considering various scenarios for the intracellular arrangement of chloroplasts and mitochondria. We show that the formula of Tholen et al. implies either that mitochondria, where (photo)respired CO2 is released, locate between the plasmalemma and the chloroplast continuum or that CO2 in the cytosol is completely mixed. However, the model of Tholen et al. is still valid if ω is replaced by ω(1?σ), where σ is the fraction of (photo)respired CO2 that experiences r ch (in addition to r wp and stomatal resistance) if this CO2 is to escape from being refixed. Therefore, responses of g m,app to (F?+?R d)/A lie somewhere between no sensitivity in the classical method (σ =1) and high sensitivity in the model of Tholen et al. (σ =0).  相似文献   

13.
14.
We investigated the effects of low nocturnal temperature on photosynthetic apparatus of winter rapeseed (Brassica campestris L.). An artificial climate chamber was used to simulate the effects of low nocturnal temperature on seedling and stomatal morphology, chloroplast ultrastructure, photosynthetic parameters, and dry matter distribution and accumulation in two winter rapeseed cultivars, Longyou-7 (ultra coldresistant) and Tianyou-2 (weak cold resistance). Compared with those at diurnal/nocturnal temperatures of 20°/10°C (control), rapeseed seedlings at 20°/5°C had increased leaf chlorophyll content, deepened green leaf color, decreased stomatal conductance (Gs), intercellular CO2 concentration (Ci), and photosynthetic rate (Pn), and improved root/shoot ratio; the majority of stomata remained open in Longyou-7 while those in Tianyou-2 were mostly closed or semi-closed. At diurnal/nocturnal temperatures of 20°/–5°C, rapeseed seedlings had decreased leaf chlorophyll content with increased Ci but decreased Gs and Pn; Tianyou-2 exhibited ruptured chloroplast membrane, dissolved grana, broken stroma lamella, and decreased root/shoot ratio, whereas Longyou-7 had chloroplasts retaining partial structure of grana with a small amount of starch granules in guard cells. Low nocturnal temperature damaged the photosynthetic membrane of chloroplasts and reduced Pn in the leaves of winter rapeseed influencing photosynthetic processes in this crop. The reduction of Pn was mainly related to stomatal limitation at diurnal/nocturnal temperatures of 20°/5°C and non-stomatal limitation at diurnal/nocturnal temperatures of 20°/–5°C.  相似文献   

15.
Phenylalanine ammonia lyase (PAL) is a specific branch point enzyme of primary and secondary metabolism. The Citrus reticulata Blanco PAL gene was cloned and designated as CrPAL1. The cDNA sequence of CrPAL1 was 2 166 bp, encoding 721 amino acid residues. Sequence alignment indicates that CrPAL1 shared a high identity with PAL genes found in other plants. Both the dominant and catalytic active sites of CrPAL1 were similar to PAL proteins observed in Petroselinum crispum. Phylogenetic tree analysis indicates that CrPAL1 was more closely related to PALs in Citrus clementina × C. reticulata and Poncirus trifoliata than to those from other plants. Subcellular localization reveals that CrPAL1-green fluorescent protein fusion protein was specifically localized in the plasma membrane. Activity of PAL as well as CrPAL1 expression increased under Fe deficiency. A similar result was noted for total phenolic content. The root exudates of C. reticulata strongly promoted reutilization of apoplastic Fe in roots. Furthermore, Fe was more desorbed from the cell wall under Fe deficiency than in sufficient Fe supply.  相似文献   

16.
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.  相似文献   

17.
Drought is one of the major abiotic stresses reducing crop yield. Since the discovery of plant microRNAs (miRNAs), considerable progress has been made in clarifying their role in plant responses to abiotic stresses, including drought. miR827 was previously reported to confer drought tolerance in transgenic Arabidopsis. We examined barley (Hordeum vulgare L. ‘Golden Promise’) plants over-expressing miR827 for plant performance under drought. Transgenic plants constitutively expressing CaMV-35S::Ath-miR827 and drought-inducible Zm-Rab17::Hv-miR827 were phenotyped by non-destructive imaging for growth and whole plant water use efficiency (WUEwp). We observed that the growth, WUEwp, time to anthesis and grain weight of transgenic barley plants expressing CaMV-35S::Ath-miR827 were negatively affected in both well-watered and drought-treated growing conditions compared with the wild-type plants. In contrast, transgenic plants over-expressing Zm-Rab17::Hv-miR827 showed improved WUEwp with no growth or reproductive timing change compared with the wild-type plants. The recovery of Zm-Rab17::Hv-miR827 over-expressing plants also improved following severe drought stress. Our results suggest that Hv-miR827 has the potential to improve the performance of barley under drought and that the choice of promoter to control the timing and specificity of miRNA expression is critical.  相似文献   

18.
Global change, such as elevated CO2, may alter interactions between invasive plants and biocontrol agents, impacting biocontrol efficacy. Here, we conducted four experiments in Texas, USA to test how elevated CO2 influences an invasive plant (Alternanthera philoxeroides) and its interactions with an introduced biocontrol beetle (Agasicles hygrophila) in terrestrial (well-watered) and flooded environments. We grew plants for 9 months in ambient or elevated CO2 (800 ppm) chambers in continuously flooded or well-watered conditions. In no-choice trials, flooding increased leaf toughness and decreased beetle consumption but beetles only oviposited on ambient CO2 leaves. In choice trials, beetles preferred to feed and oviposit on terrestrial plants but were also less likely to damage elevated CO2 leaves. Caged beetle populations were larger in terrestrial conditions than aquatic conditions for a second set of plants grown in the chambers. With a third set of plants grown in the ambient or elevated CO2 chambers, damage for plants placed in the field (aquatic setting) was higher for plants grown in terrestrial conditions vs. flooded conditions at ambient CO2. Our results suggest that elevated CO2 will have minor effects on the efficacy of this biocontrol agent by decreasing oviposition and number of leaves damaged, and hydrologic environment may affect invasive plant performance by altering herbivore oviposition and feeding preferences. A broader understanding of the effects of global change on biocontrol will help prevent and manage future spread of invasive plants.  相似文献   

19.
Holtum JA  Winter K 《Planta》2003,218(1):152-158
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature.  相似文献   

20.
The Camptotheca acuminata cell suspension cultures were established to produce the well-known antitumor monoterpene indole alkaloid camptothecin (CAM). Most CAM was present in the broth of the C. acuminata cell suspension cultures. The CAM production was evidenced to be attenuated when the C. acuminata cell suspension cultures were continuously subcultured and grown under identical axenic conditions. A practical cryopreservation and recovery procedure was established to maintain the C. acuminata cell suspension cultures. Biotic and abiotic elicitors were administrated to the C. acuminata cell suspension cultures to restore and enhance CAM production. Of them, sorbitol, a well-known hyperosmotic stressor, was proven to be the most effective elicitor that stimulates a ~500-fold increase of CAM production. The committed biosynthetic precursors of CAM, tryptamine and secologanin, were feed to the C. acuminata cell suspension cultures and the CAM production is not remarkably increased. However, N 1-acetylkynuramine (NAK), an important metabolite of kynuramine pathway, was isolated and identified from the cell suspension cultures feeding with tryptamine. The present work provides an efficient method to produce CAM and NAK using the C. acuminata cell suspension cultures. The biotransformation of tryptamine to NAK sheds lights on the biosynthetic formation of the pyrroloquinoline moiety of CAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号