首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Control mechanisms operating through a cytochrome P-450 system have emerged lately as a possible important determinant of pulmonary hemodynamics. Their action may be expressed in the adjustment of vascular tone under both physiologic and pathophysiologic conditions. One such condition is the pulmonary constrictor response to hypoxia. The identity of the effector agent, or agents, is not known, though there are data implicating monooxygenase products of arachidonic acid. From this premise, we wanted to evaluate the effect of cytochrome P-450 inhibitors on basal pulmonary vascular tone during normoxia, and their effect upon hypoxic pulmonary vasoconstriction response. Experiments were performed in an isolated, perfused lung preparation from 1- and 7-day-old piglets, and the effects of two cytochrome P-450 inhibitors (metyrapone and ketoconazole) were tested on the perfusion pressure. At 10(-5) and 10(-4) M, metyrapone caused a modest, but significant, increase in pulmonary pressure (p less than 0.05) in 7-day-old preparations, while it was without effect in the 1-day-old preparation. Similarly, ketoconazole at concentrations from 10(-6) M upwards increased the perfusion pressure in the older animal (p less than 0.01). Responses to the inhibitors were not seen in preparations that had been pretreated with a cyclooxygenase inhibitor (indomethacin, 2.8 x 10(-6) M) or a dual cyclooxygenase-lipoxygenase inhibitor (BW755C, 10(-5) M). Hypoxic vasoconstriction was marginally enhanced by 10(-4) M metyrapone, while it was affected inconsistently by 10(-5) M ketoconazole. We conclude that vasoactive agents formed through cytochrome P-450 reactions have a minor role, or no role at all, in the control of pulmonary hemodynamics in the newborn pig.  相似文献   

2.
Antifertility effects of two cytostatic agents, busulfan and procarbazine, were evaluated using 43 captive breeding pairs of adult coyotes. Nineteen pairs served as untreated controls. Only the male or female of remaining pairs was treated. Females received either 8 mg busulfan/kg or 6 mg procarbazine/kg just prior to onset of the breeding season. Males were treated once with either 8 mg busulfan/kg just before onset of breeding or with 4 mg busulfan/kg or 6 mg procarbazine/kg about 1 mo before onset of the breeding season. Uterine implantation sites were counted in females of all breeding pairs postpartum via laparotomy. Busulfan given to males at 4 mg/kg or to either females or males at 8 mg/kg significantly reduced implantation sites compared to untreated controls. Thus, busulfan may be successful in controlling population in coyotes in the field where both the male and female of a breeding pair may ingest the compound. However, multiple doses at a lower rate would be preferred because dosages greater than 10 mg/kg resulted in mortality. Although procarbazine has a mode of action similar to busulfan, doses of 6 mg procarbazine/kg did not reduce implantation sites or disrupt normal spermatogenesis. Increased doses need to be evaluated before effectiveness of procarbazine for coyote population control can be determined.  相似文献   

3.
The precise biochemical mechanism by which a number of clinically-active anticancer compounds function remains unclear. Among these are procarbazine (NSC-77213), cyclophosphamide (NSC-26271), streptozotocin (NSC-85998), dacarbazine (NSC-45388), and hexamethylmelamine (NSC-13875). In all cases, there is an N-methyl or N-alkyl substituent which can be or has been shown to generate carbinolamine-like intermediates as a result of oxidative metabolism. Such intermediates can react with amines, imines, sulfhydryls and similar functional groups to form covalent linkages. Thus, carbinolamine metabolites of these clinically-active compounds are proposed as the active agents capable of altering covalently nucleic acids and proteins. It is this alkylating property that may be responsible for these compounds adversely effecting the mitosis of neoplastic cells. Thus, a unifying hypothesis is proposed whereby metabolic hydroxylation of various miscellaneous anticancer agents is the basis for biological activity. In essence, therefore, three broad classes of alkylating agents may be perceived: (1) the classical alkylators such as the nitrogen and sulfur mustards and the sulfonates, (2) bioreductive alkylating agents, and (3) biooxidative alkylating agents such as the carbinolamines. Though the chemical spectrum of each category may be highly diverse, nevertheless, all function as alkylating agents.  相似文献   

4.
The interaction of tyrosinase with the anticancer drug procarbazine has been investigated. In the presence of the enzyme alone no oxidation of this dialkylhydrazine above the background level was observed. However, when phenolic substrates (4-tert-butylcatechol or N-acetyl-l-tyrosine) were included in the reaction mixture, procarbazine was rapidly degraded. Oxygen consumption measurements showed that in a mixture both the phenolic substrate and the drug were oxidized. The major product of procarbazine degradation was isolated and identified as azoprocarbazine, the first active metabolite of this drug detected in previous in vivo and in vitro studies. This indirect oxidation of the hydrazine group in this anticancer agent indicates possible application of a hydrazine linker in construction of tyrosinase-activated anti-melanoma prodrugs.  相似文献   

5.
The mechanisms of selenite toxicity and mutagenicity in S. typhimurium have been characterized. In contrast to previous reports, selenite toxicity was shown not to involve nonspecific incorporation into protein via the sulfur metabolic pathways. Selenite toxicity was, however, shown to involve its ability to act as an oxidizing agent, primarily through reactions with sulfhydryls. Strains which lack glutathione (GSH) are more sensitive to killing by sulfhydryl reagents. The selenite sensitivity of such a mutant was a biphasic phenomenon. The mutant was much more sensitive than a strain which contained GSH at lower selenite concentrations whereas, at higher concentrations, the mutant was much more resistant to selenite. The mechanism of selenite toxicity at lower concentrations in this mutant thus appeared to involve damage to intracellular sulfhydryls. The sensitization to higher doses of selenite by GSH could be explained by the generation of toxic oxygen species. The in vitro reactions of selenite with both cysteine and GSH readily produced H2O2 and O2-. A S. typhimurium strain which overproduces superoxide dismutase (SOD) and catalase was more resistant to high concentrations of selenite, but not killing by the lower doses. Pretreatment of cells with a nonlethal dose of selenite induced the synthesis of proteins which protected the cells from killing by H2O2 or high doses of selenite. Selenite was also a mutagen in the tester strain TA104, in which a number of other oxidizing agents have also been found to be mutagens. These results were consistent with a model in which the reactions of selenite and intracellular thiols with concomitant production of active oxygen species are the primary causal agents of selenite mutagenicity and toxicity in S. typhimurium.  相似文献   

6.
Silver has been used for centuries as an antimicrobial agent to reduce bioburden and prevent infection. Its usage diminished when antibiotics were introduced but remained one of the most popular agents for wound infections, especially in burned patients. Incorporation of silver into a range of hygiene and healthcare applications has increased, and this has raised concerns over the development of silver resistance, toxicity, methods of testing products and evidence of efficacy. The published evidence for resistance and toxicity is limited and associated with frequent and high levels of silver used. Increasing evidence of improved antimicrobial activity of nanoparticles of silver and possible dual immunomodulatory effects are exciting. This may lead to further product development as potential alternative preservatives as some currently available preservatives have an increasing incidence of allergic reactions. Acknowledging the role of the carrier is important, and as silver is active when in solution, opens a window of opportunity in personal hygiene area. This is important in an age when multiple antibiotic–resistant bacteria are becoming prevalent.  相似文献   

7.
Side effects of cytostatics commonly used in the Haematology Clinic are analysed. The toxic action on the host's organs is discussed in L-asparaginase, azathioprine, bleomycine, busulfan, cyclophosphamide, cytosin-arabinoside, daunorubicine, fluorouracil, mercaptopurine, methotrexate, dichlorplatinum, procarbazine and the vinca alkaloids. In addition to toxic symptoms arising from single organs the most important 21 anticancer drugs are gathered in a table. Metabolism of activation and inactivation are mentioned to interprete symptoms of toxicity. Furthermore, the interactions between commonly administered drugs and carcinostatics which may enhance or suppress their carcinostatic efficacy are exposed. A final survey of possible pharmacological rescue measures, which may improve the tolerance of anticancer drugs by diminishing their toxicity is presented.  相似文献   

8.
Chemotherapy of solid tumours is considered with respect to cell vulnerability, toxicity, tissue penetrability, tumour disruption and anatomical location. Chemotherapy to date has dealt primarily with the first two factors. Even when the cell is vulnerable to the agent used and host toxicity can be controlled, the other factors can lead to treatment failures. It is suggested that combinations of cytotoxic agents may be of more value than single agents. Timing and dosage are also considered. It is recommended that terminal cases and extremely toxic patients not be submitted to chemotherapy. In 78 patients with bronchogenic carcinoma, to whom nicotinic acid was given as a possible aid to tissue penetrability by nitrogen mustard, there was some indication that further similar studies might be of some value. Specific cases are summarized to illustrate the importance of various factors in the treatment of individual patients.  相似文献   

9.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

10.
An alternative model is presented for the selection of therapeutic chelating agents to enhance the mobilization and excretion of a toxic metal. The model is based on the in vivo patterns of absorption, distribution, reaction and excretion of the chelating agent, a typical toxic metal ion and complexes of the two. The model emphasizes the kinetic aspects of the processes involved and indicates how other processes may be incorporated such as redox reactions involving the chelating agent or metal. The identification of rate determining steps and methods for their manipulation are assumed to be of importance. The application of this model to specific metals is outlined.  相似文献   

11.
The effect of the anesthetic agent used in killing animals in an in vivo pulmonary toxicity screening test was examined in Fischer-344 rats and in Syrian hamsters. Using animals killed by cervical dislocation with no anesthesia as a baseline, two types of anesthetic agents (halothane, sodium pentobarbital) and carbon dioxide were tested. Carbon dioxide caused the greatest perturbance of baseline lavage fluid and tissue parameters normally used in the screening test. Halothane anesthesia caused the least perturbance in the screening test parameters and was selected as the anesthetic of choice for use in future pulmonary toxicity tests.  相似文献   

12.
Intraperitoneal or intravenous inoculation of live or inactivated influenza virus induced two characteristic responses of the peripheral leukocytes in mice, an early appearing leukopenic response and late appearing lymphopenia. The former response usually developed and subsided within several hours, though the change in leukocyte population was fairly complicated depending upon the activity of the inoculated material, while the latter began several hours after inoculation and reached its minimum level in 10 to 20 hr. The agent responsible for the former may be virus pyrogen, while the latter seems to be caused by some substance(s) other than that. The early appearing leukopenic response was similar to that due to bacterial endotoxin in respect to the characteristic pattern of the change in peripheral leukocyte population, though it was relatively easy to distinguish one from the other by the length of the latent period and by the heat stability of the causative agent. Live or inactivated influenza virus causing the early appearing leukopenic response was found also to have the mouse body weight-decreasing toxicity. The significance of these findings in the laboratory control test of influenza vaccine for untoward reactions often observed in human inoculated with some inactivated influenza vaccines was discussed. The possible roles of the two agents, virus pyrogen and endotoxin, in the febrile response were mentioned.  相似文献   

13.
14.
The direct labeling of antibodies and antibody fragments to form a highly stable bond between technetium and the sulfide groups of proteins is now well established. To optimize this reaction, the antibody protein must have sufficient reactive sulfides available to accept that technetium metal ions that are formed by the reduction of pertechnetate in the presence of a weak complexing agent. The reactive sulfide groups are provided by first reducing a small fraction of the disulfide bridges in the antibody protein or by starting with Fab′ fragments, which already have reactive sulfide groups. When the antibody protein has been appropriately reduced, and the reactive sulfide groups protected by a metal ion with a lower binding affinity than technetium, such as tin or zinc, very high labeling yields of high-affinity-bonded 99mTc can be achieved. This can be accomplished without loss of immunoreactivity, measured as either affinity or immunoreactive fraction.Side reactions can produce radiochemical impurities such as low-affinity, bound 99mTc; 99mTc colloids; 99mTc peptides or antibody aggregates; or 99mTc-complexes. Also, pertechnetate ions may be an impurity if the sodium pertechnetate solution added to the reduced antibodies is not completely reduced. The specifics of minimizing these side reactions have not been extensively discussed in the prior literature; however, it is clear that appropriate reduction of the protein prior to labeling and complete removal of the reducing agent, particularly if it contains reactive sulfide groups or is toxic, are critical.One- or two-step 99mTc-labeling kits for preparing 99mTc-labeled antibody or antibody fragments are rapidly being introduced for use in clinical nuclear medicine studies. These direct labeling methods employ a common sequence of chemical reactions, although the reducing agents for both the antibody and the [99mTc]pertechnetate may vary. Different 99mTc transfer agents may be used, but all transfer agents have the common feature of quickly forming weak to moderately strong complexes with reduced technetium. Most use Sn(II) to reduce the pertechnetate, although other reducing agents can be used.  相似文献   

15.
Catechols can undergo a variety of chemical reactions. In this review, we particularly focus on complex formations and the redox chemistry of catechols, which play an inportant role in the toxicity of catechols. In the presence of heavy metals, such as iron or copper, stable complexes can be formed. In the presence of oxidizing agents, catechols can be oxidized to semiquinone radicals and in a next step to o‐benzoquinones. Heavy metals may catalyse redox reactions in which catechols are involved. Further chemical properties like the acidity constant and the lipophilicity of different catechols are shortly described as well. As a consequence of the chemical properties and the chemical reactions of catechols, many different reactions can occur with biomolecules such as DNA, proteins and membranes, ultimately leading to non‐repairable damage. Reactions with nucleic acids such as adduct formation and strand breaks are discussed among others. Interactions with proteins causing protein and enzyme inactivation are described. The membrane–catechol interactions discussed here are lipid peroxidation and uncoupling. The deleterious effect of the interactions between catechols and the different biomolecules is discussed in the context of the observed toxicities, caused by catechols.  相似文献   

16.
The clinical use of bleomycin is limited by a dose-dependent pulmonary toxicity. Bleomycin is thought to be growth inhibitory by virtue of its ability to oxidatively damage DNA through its complex with iron. Our previous preclinical studies showed that bleomycin-induced pulmonary toxicity can be reduced by pretreatment with the doxorubicin cardioprotective agent dexrazoxane. Dexrazoxane is thought to protect against iron-based oxygen radical damage through the iron chelating ability of its hydrolyzed metabolite ADR-925, an analog of ethylenediaminetetraacetic acid (EDTA). ADR-925 quickly and effectively displaced either ferrous or ferric iron from its complex with bleomycin. This result suggests that dexrazoxane may have the potential to antagonize the iron-dependent growth inhibitory effects of bleomycin. A study was undertaken to determine if dexrazoxane could antagonize bleomycin-mediated cytotoxicity using a CHO-derived cell line (DZR) that was highly resistant to dexrazoxane through a threonine-48 to isoleucine mutation in topoisomerase IIalpha. Dexrazoxane is also a cell growth inhibitor that acts through its ability to inhibit the catalytic activity of topoisomerase II. Thus, the DZR cell line allowed us to examine the cell growth inhibitory effects of bleomycin in the presence of dexrazoxane without the confounding effect of dexrazoxane inhibiting cell growth. The cell growth inhibitory effects of bleomycin were unaffected by pretreating DZR cells with dexrazoxane. These results suggest that dexrazoxane may be clinically used in combination with bleomycin as a pulmonary protective agent without adversely affecting the antitumor activity of bleomycin.  相似文献   

17.
Cancer is the second cause of death worldwide. Chemotherapy and radiotherapy are the most common modalities for the treatment of cancer. Experimental studies have shown that inflammation plays a central role in tumor resistance and the incidence of several side effects following both chemotherapy and radiotherapy. Inflammation resulting from radiotherapy and chemotherapy is responsible for adverse events such as dermatitis, mucositis, pneumonitis, fibrosis, and bone marrow toxicity. Chronic inflammation may also lead to the development of second cancer during years after treatment. A number of anti-inflammatory drugs such as nonsteroidal anti-inflammatory agents have been proposed to alleviate chronic inflammatory reactions after radiotherapy or chemotherapy. Curcumin is a well-documented herbal anti-inflammatory agents. Studies have proposed that curcumin can help management of inflammation during and after radiotherapy and chemotherapy. Curcumin targets various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor κB (NF-κB), thereby attenuating the release of proinflammatory and profibrotic cytokines, and suppressing chronic production of free radicals, which culminates in the amelioration of tissue toxicity. Through modulation of NF-κB and its downstream signaling cascade, curcumin can also reduce angiogenesis, tumor growth, and metastasis. Low toxicity of curcumin is linked to its cytoprotective effects in normal tissues. This protective action along with the capacity of this phytochemical to sensitize tumor cells to radiotherapy and chemotherapy makes it a potential candidate for use as an adjuvant in cancer therapy. There is also evidence from clinical trials suggesting the potential utility of curcumin for acute inflammatory reactions during radiotherapy such as dermatitis and mucositis.  相似文献   

18.
The antineoplastic agent Procarbazine was tested for the induction of genetic damage in Drosophila melanogaster. The compound was administered to adult males by oral application. The following types of genetic damage were measured: (1) sex-linked recessive lethals; (2) dominant lethals; (3) total and partial sex-chromosome loss; and (4) translocations. Procarbazine is highly mutagenic in causing recessive lethal mutations in all stages of spermatogenesis. In sperm a clear-cut concentration-effect relationship is not apparent, but in spermatids such a relationship is obtained for mutation induction at low levels of procarbazine exposure, while at high concentrations the induction of recessive lethals is not a function of concentration. A low induction of total sex-chromosome loss (X,Y) and dominant lethals was observed in metabolically active germ cells (spermatids), but procarbazine failed to produce well-defined breakage events, such as partial sex-chromosome loss (YL,YS) and II-III translocations. The results obtained in Drosophila melanogaster are discussed and compared with the mutational pattern reported in the mouse after procarbazine treatment.  相似文献   

19.
It is obvious that the simplest approach to cancer prevention is to avoid exposure to causative agents, whether they be tumor initiators, promoters, or agents that enhance the progression of cells to increasing degrees of malignancy. On the other hand, this simple approach will not always be feasible, either because the causative agent cannot be readily removed from the environment, the precise agent is not known with certainty, or individuals have already suffered significant exposure. It is necessary, therefore, to develop new strategies that can arrest or even reverse tumor development at various stages in the carcinogenic process. The long latency in tumor development, the multistage nature of the process, and the potential reversibility of some of these stages, offer reasons for optimism that this can be achieved. Advances in our understanding of the fundamental mechanisms by which environmental agents produce disturbances in growth control suggest very specific strategies. This paper provides examples of how recent knowledge in the areas of growth factors, growth factor receptors, protein kinases, signal transduction pathways, oncogenes and growth suppressor genes might lead to the development of such strategies. Major problems will include the development of agents which will specifically act on the target cells of interest without producing toxicity to other tissues, as well as better methods for identifying those individuals who are at risk of developing cancer and, therefore, warrant such therapy.  相似文献   

20.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are highly effective in treating the pain and inflammation associated with osteoarthritis and rheumatoid arthritis, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Treatment guidelines suggest that patients with one or more risk factors for NSAID associated ulcers should be prescribed preventive treatment. However, well over 80% of such patients may not receive an appropriate therapeutic intervention. Multiple strategies are available to reduce the risk for NSAID associated gastrointestinal complications. First, risk may be reduced by using non-NSAID analgesics. Second, use of the minimum effective dose of the NSAID may reduce risk. Third, co-therapy with a proton pump inhibitor or misoprostol may be desirable in at-risk patients. Use of cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although this benefit is eliminated in patients who receive aspirin, and cyclo-oxygenase-2 inhibitors may increase cardiovascular adverse events. The optimal management of NSAID related gastrointestinal complications must be based on the individual patient's risk factors for gastrointestinal and cardiovascular disease, as well as on the efficacy and tolerability of both the NSAID and accompanying gastroprotective agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号