首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
HeLa S3 cells were exposed to varied concentrations of methylmercury over varied periods of time and its binding by the cells was studied using 203Hg-labeled methylmercuric chloride as radioactive marker. Also studied was the effect of cell-bound methylmercury on DNA replication and protein synthesis and on the growth rate of the cells. The results show that methylmercury binding is a rapid process, with much of the organomercurial bound within the the first 60 min of incubation, and that considerable quantities of organic mercury become affixed to the cells. The amounts of bound methylmercury, [CH3Hg(II)]bound, given in mol/cell, range from 2 × 10?16 (at 1 h of incubation and at 1 μM CH3Hg(II) in the medium) to almost 4 × 10?14 (at 24 h of incubation and at 100 μM CH3Hg(II) in the medium). A [CH3Hg(II)]bound value of about 30 × 10?16 mol/cell appears to be the threshold below which cells display a normal growth pattern and below which metabolic events such as DNA replication or protein synthesis are affected only to a minor degree but above which major changes in cell metabolism and cell growth take place. Methylmercury binding by the cells is tight so that only 20% of the bound material is released from the cells over a 3-h incubation period when the cells are placed into fresh, methylmercury-free growth medium. Analysis of the binding data in terms of binding to identical and completely independent sites yields an association constant K of 7.92 × 104 l/mol and for the maximum concentration of cellular binding sites the value 2.40 × 10?14 mol/cell or 1.45 × 1010 sites/cell. Evidence is presented which shows that cellular sulfhydryl groups do not suffice to provide all the sites taken up by methylmercury and that binding, in all likelihood, involves basic nitrogen, too. The levels of cell-bound methylmercury are such that binding to HeLa DNA and HeLa chromatin, for instance, can readily take place. Methylmercury binding data obtained by using the technique of particle-induced X-ray emission (PIXE) are in good agreement with the data obtained via isotope dilution.  相似文献   

2.
Mercuric contamination of aqueous cultures results in impairment of viability of photosynthetic bacteria primarily by inhibition of the photochemistry of the reaction center (RC) protein. Isolated reaction centers (RCs) from Rhodobacter sphaeroides were exposed to Hg2+ ions up to saturation concentration (~?103 [Hg2+]/[RC]) and the gradual time- and concentration-dependent loss of the photochemical activity was monitored. The vast majority of Hg2+ ions (about 500 [Hg2+]/[RC]) had low affinity for the RC [binding constant Kb?~?5 mM?1] and only a few (~?1 [Hg2+]/[RC]) exhibited strong binding (Kb?~?50 μM?1). Neither type of binding site had specific and harmful effects on the photochemistry of the RC. The primary charge separation was preserved even at saturation mercury(II) concentration, but essential further steps of stabilization and utilization were blocked already in the 5 < [Hg2+]/[RC]?<?50 range whose locations were revealed. (1) The proton gate at the cytoplasmic site had the highest affinity for Hg2+ binding (Kb?~?0.2 μM?1) and blocked the proton uptake. (2) Reduced affinity (Kb?~?0.05 μM?1) was measured for the mercury(II)-binding site close to the secondary quinone that resulted in inhibition of the interquinone electron transfer. (3) A similar affinity was observed close to the bacteriochlorophyll dimer causing slight energetic changes as evidenced by a?~?30 nm blue shift of the red absorption band, a 47 meV increase in the redox midpoint potential, and a?~?20 meV drop in free energy gap of the primary charge pair. The primary quinone was not perturbed upon mercury(II) treatment. Although the Hg2+ ions attack the RC in large number, the exertion of the harmful effect on photochemistry is not through mass action but rather a couple of well-defined targets. Bound to these sites, the Hg2+ ions can destroy H-bond structures, inhibit protein dynamics, block conformational gating mechanisms, and modify electrostatic profiles essential for electron and proton transfer.  相似文献   

3.
Mercury(II) bridge complexes of the type [Nuc-Hg-Nuc] (Nuc = thymidine or guanosine), and methylmercury(II) complexes of thymidine and guanosine of the type [CH3Hg(Nuc)], have been prepared under appropriate conditions of pH and reactant's stochiometry in acqueous soluton. The various complexes have been characterized by 1H and 13C NMR and used as probes, in competition and exchange studies, to establish the relative affinities of Hg(II) and CH3Hg(II) towards the nucleosides guanosine and thymidine. These studies have confirmed that Hg(II) and CH3Hg(II) bind to N3 of thymidine in preference to N1 of guanosine. The studies further show that reactions of mercury(II) with the nucleosides are thermodynamically controlled; the preperential binding reflects the relative stabilities of the respective complexes.  相似文献   

4.
Interactions of cadmium (Cd) ions with bovine serum albumin (BSA), bovine hepatic metallothionein (MT), calf thymus histone and deoxyribonucleic acid (DNA), and bovine hepatic chromatins were studied in the presence and absence of divalent zinc (Zn), copper (Cu), mercury (Hg), or lead (Pb) ions, using equilibrium dialysis at pH 7 and at 37°C. The BSA had 3.5 Cd-binding sites with an apparent affinity constant of 1×105. The other metal ions inhibited the binding by reducing the affinity constant and the number of Cd-binding sites in BSA. There were 6 high affinity and 13 low affinity Cd-binding sites in the MT. Zinc ions had poor efficacy in reducing the binding of Cd to the MT. However, the Cu2+ and Hg2+ ions inhibited the Cd binding to a considerable extent, the former ions being more potent in this respect. Histone did not bind Cd. There were two kinds of Cd-binding sites in DNA: One mole of Cd per four moles DNA-phosphorus at low affinity sites, and one mole of Cd per 6.7 moles DNA-phosphorus at high affinity sites. Their apparent association constants were 8.3×105 and 4.4×106 M, respectively. The other metal ions had inhibitory effects on the binding of Cd to DNA. Histone reduced the Cd-DNA interactions to only a minor extent. The other metal ions reduced the binding of Cd to DNA-histone complex to a small extent. Cadmium binds to the euchromatin (Euch), heterochromatin (Het), and Euch-Het mixture almost equally. The other metal ions reduced the binding maximally in Euch-Het followed next in order by Het and Euch. Cupric ions were the most potent inhibitors of the interactions of Cd with the nuclear materials.  相似文献   

5.
As mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversion of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS)2) and Hg-glutathione (Hg(GSH)2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH)2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.  相似文献   

6.
Biomass of a mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution at pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin (100 mg Hg/g dry resin in deionized water). The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na(+) were present. Biosorption of mercury was also examined in sodium phosphate solution andphosphate-buffered saline solution (pH 7.0), containing 50mM and 150 mM of Na(+), respectively. It was found that the presence of Na(+) did not severely affect the biosorption of Hg(2+), indicating a high mercury selectivity ofthe biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg(2+)bythe biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow theLangmuir or Freundlich adsorption isotherms. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
A novel peptidyl chemosensor (PySO2-His-Gly-Gly-Lys(PySO2)-NH2, 1) was synthesized by incorporation of two pyrene (Py) fluorophores into the tetrapeptide using sulfonamide group. Compound 1 exhibited selective fluorescence response towards Hg(II) over the other metal ions in aqueous buffered solutions. Furthermore, 1 with the potent binding affinity (Kd = 120 nM) for Hg(II) detected Hg(II) without interference of other metal ions such as Ag(I), Cu(II), Cd(II), and Pb(II). The binding mode of 1 with Hg(II) was investigated by UV absorbance spectroscopy, 1H NMR titration experiment, and pH titration experiment. The addition of Hg(II) induced a significant decrease in both excimer and monomer emissions of the pyrene fluorescence. Hg(II) interacted with the sulfonamide groups and the imidazole group of His in the peptidyl chemosensor and then two pyrene fluorophores were close to each other in the peptide. The decrease of both excimer and monomer emission was mainly due to the excimer/monomer emission change by dimerization of two pyrene fluorophores and a quenching effect of Hg(II).  相似文献   

8.
Browne CL  Fang SC 《Plant physiology》1983,72(4):1040-1042
The uptake of mercury vapor by six gramineous plant species was compared under uniform conditions using a whole-plant chamber and 203Hg-labeled mercury at a low atmospheric concentration. Mean Hg uptake by leaves of the C3 species oats (Avena sativa), barley (Hordeum vulgare), and wheat (Triticum aestivum) was 5 times greater than that by leaves of the C4 species corn (Zea mays), sorghum (Sorghum bicolor), and crabgrass (Digitaria sanguinalis). Although there was a difference in resistances associated with vapor entry into the leaves, as shown by estimates of gas exchange, the differential uptake by C3 and C4 species was largely attributable to internal resistances to Hg vapor binding. The nature of the internal resistances and the site or sites of Hg vapor binding remain unspecified.  相似文献   

9.
The relative transport capabilities of the cells of the root periphery and cortex were investigated using a variety of experimental techniques. Brief (30 seconds to 1 minute) exposures with the penetrating sulfhydryl reagent, N-ethyl maleimide (NEM), and the impermeant reagent, p-chloromercuribenzene sulfonic acid (PCMBS), dramatically reduced 86Rb+ (0.2 millimolar RbCl) uptake into 2 centimeter corn (Zea mays [A632 × (C3640 × Oh43)]) root segments. Autoradiographic localization studies with [3H]NEM and [203Hg]PCMBS demonstrated that, during short term exposures with either reagent, sulfhydryl binding occurred almost exclusively in the cells of the root periphery.

Corn root cortical protoplasts were isolated, and exhibited significant K+(86Rb+) influx. The kinetics for K+ uptake were studied; the influx isotherms were smooth, nonsaturating curves that approached linearity at higher K+(Rb+) concentrations (above 1 millimolar K+). These kinetics were identical in shape to the complex kinetics previously observed for K+ uptake in corn roots (Kochian, Lucas 1982 Plant Physiol 70: 1723-1731), and could be resolved into a saturable and a first order kinetic component.

The existence of a hypodermal apoplastic barrier was investigated. The apoplastic, cell wall binding dye, Calcofluor White M2R, appeared to be excluded from the cortex by the hypodermis. However, experiments with damaged roots indicated that this result may be an artifact resulting from the binding of dye to the epidermal cell walls. Furthermore, [203Hg] PCMBS autoradiography demonstrated that the hypodermis was not a barrier to apoplastic movement of PCMBS.

These results suggest that although cortical cells possess the capacity to absorb ions, K+ influx at low concentrations is limited to the root periphery. Cortical cell uptake appears to be repressed under these conditions. At higher concentrations, cortical cells may function to absorb K+. Such a model may involve regulation of cortical cell ion transport capacity.

  相似文献   

10.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

11.
Understanding the biogeochemical cycle of the highly toxic element mercury (Hg) is necessary to predict its fate and transport. In this study, we determined that biogenic magnetite isolated from Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magnetotacticum MS-1 was capable of reducing inorganic mercury [Hg(II)] to elemental mercury [Hg(0)]. These two magnetotactic bacteria (MTB) lacked mercuric resistance operons in the genomes. However, they revealed high resistance to Hg(II) under atmospheric conditions and an even higher resistance under microaerobic conditions (1% O2 and 99% N2). Neither strain reduced Hg(II) to Hg(0) under atmospheric conditions. However, a slow rate (0.05–0.21 µM·d?1) of Hg(II) loss occurred from late log phase to stationary phase in two MTBs' culture media under microaerobic conditions. Increased Hg(II) entered both cells under microaerobic conditions relative to atmospheric conditions. The majority of Hg(II) was still blocked by the cell membrane. Hg(II) reduction was more effective when biogenic magnetite was extracted out, with or without the magnetosome membrane envelope. When magnetosome membrane was present, 8.55–13.53% of 250 nM Hg(II) was reduced to Hg(0) by 250 mg/L biogenic magnetite suspension within 2 hours. This ratio increased to 55.07–64.70% while magnetosome membrane was removed. We concluded that two MTBs contributed to the reduction of Hg(II) to Hg(0) at a slow rate in vivo. Such reduction was more favorable to occur when biogenic magnetite is released from dead cells. It proposed a new biotic pathway for the formation of Hg(0) in aquatic systems.  相似文献   

12.
The binding of methylmercury, CH3Hg(II), by small molecules in the intracellular region of human erythrocytes has been studied by 1H-NMR spectroscopy. To suppress or completely eliminate interfering resonances from the much more abundant hemoglobin protons, spectra were measured by a technique based on the transfer of saturation throughout the envelope of hemoglobin resonances following a selective presaturation pulse or by the spin-echo Fourier transform method. With these techniques, 1H-NMR spectra were measured for the more abundant intracellular small molecules, including glycine, alanine, creatine, lactic acid, ergothioneine and glutathione, in both intact and hemolyzed erythrocytes to which CH3Hg(II) had been added. The results for intact erythrocytes indicate that part of the CH3Hg(II) is complexed by intracellular glutathione. These results also indicate that exchange of CH3Hg(II) among glutathione molecules is fast, with the average lifetime of a CH3Hg(II)-glutathione complex estimated to be less than 0.01 s. From exchange-averaged chemical shifts of the resonance for the proton on the α-carbon of the cysteine residue of glutathione, it is shown that, in hemolyzed erythrocytes, the sulfhydryl group of glutathione binds CH3Hg(II) more strongly than the sulfhydryl groups of hemoglobin.  相似文献   

13.
The sensitivity of intact cells of purple photosynthetic bacterium Rhodobacter sphaeroides wild type to low level (<100 μM) of mercury (Hg2?) contamination was evaluated by absorption and fluorescence spectroscopies of the bacteriochlorophyll-protein complexes. All assays related to the function of the reaction center (RC) protein (induction of the bacteriochlorophyll fluorescence, delayed fluorescence and light-induced oxidation and reduction of the bacteriochlorophyll dimer and energization of the photosynthetic membrane) showed prompt and later effects of the mercury ions. The damage expressed by decrease of the magnitude and changes of rates of the electron transfer kinetics followed complex (spatial and temporal) pattern according to the different Hg2? sensitivities of the electron transport (donor/acceptor) sites including the reduced bound and free cytochrome c? and the primary reduced quinone. In contrast to the RC, the light harvesting system and the bc? complex demonstrated much higher resistance against the mercury pollution. The 850 and 875 nm components of the peripheral and core complexes were particularly insensitive to the mercury(II) ions. The concentration of the photoactive RCs and the connectivity of the photosynthetic units decreased upon mercury treatment. The degree of inhibition of the photosynthetic apparatus was always higher when the cells were kept in the light than in the dark indicating the importance of metabolism in active transport of the mercury ions from outside to the intracytoplasmic membrane. Any of the tests applied in this study can be used for detection of changes in photosynthetic bacteria at the early stages of the action of toxicants.  相似文献   

14.
Mercury vapour (Hg°) emission from plants contributes to the atmospheric mercury cycle. Although a part of this Hg° emission originates from Hg(II) uptake by the roots, the question how terrestrial plants reduce Hg(II) has not been addressed so far. Young barley plants grown on a hydroponic cultivation containing Hg(II) increased the Hg° emission significantly. Homogenates of barley leaves added to dissolved Hg(II) induced a powerful volatilization at alkaline but not at acidic pH. The same pH dependence and emission kinetic together with the highest reduction capacity was observed for ascorbic acid as compared to other phytoreductants. The electrochemical potentials of the reactions involved suggest an electron transfer from NADPH via GSH and ascorbate to Hg(II). The results support the assumption of a novel mechanism how plants transfer reduction equivalents from the antioxidative defense system via ascorbate to reduce Hg(II) ions, thus counteracting mercury toxicity by volatilizing the metal. This effect appears to be assisted by other light-dependent processes such as transpiration and ascorbate synthesis.  相似文献   

15.
The effects of pH on the uptake and accumulation of Hg(II) by Escherichia coli were determined at trace, environmentally relevant, concentrations of Hg and under anaerobic conditions. Hg(II) accumulation was measured using inducible light production from E. coli HMS174 harboring a mer-lux bioreporter plasmid (pRB28). The effect of pH on the toxicity of higher concentrations of Hg(II) was measured using a constitutive lux plasmid (pRB27) in the same bacterial host. In this study, intracellular accumulation and toxicity of Hg(II) under anaerobic conditions were both significantly enhanced with decreasing pH over the pH range of 8 to 5. The pH effect on Hg(II) accumulation was most pronounced at pHs of <6, which substantially enhanced the Hg(II)-dependent light response. This enhanced response did not appear to be due to pH stress, as similar results were obtained whether cells were grown at the same pH as the assay or at a different pH. The enhanced accumulation of Hg(II) was also not related to differences in the chemical speciation of Hg(II) in the external medium resulting from the changes in pH. Experiments with Cd(II), also detectable by the mer-lux bioreporter system, showed that Cd(II) accumulation responded differently to pH changes than the net accumulation of Hg(II). Potential implications of these findings for our understanding of bacterial accumulation of Hg(II) under anaerobic conditions and for bacteria-mediated cycling of Hg(II) in aquatic ecosystems are discussed. Arguments are provided suggesting that this differential accumulation is due to changes in uptake of mercury.  相似文献   

16.
Dopamine transporters of bovine and rat striata were identified by their specific [3H]cocaine binding and cocaine-sensitive [3H]dopamine ([3H]DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA; however, it increased its affinity for cocaine without changing the number of binding sites. This suggests that the DA transporter is a glycoprotein and that Con A action on it produces conformational changes

Inorganic and organic mercury reagents inhibited both [3H]DA uptake and [3H]cocaine binding, though they were all more potent inhibitors of the former, n- Ethylmaleimide inhibited [3H]DA uptake totally but [3H]cocaine binding only partially. Also, n-pyrene maleimide had differential effects on uptake and binding, inhibiting uptake and potentiating binding. [3H]DA uptake was not affected by mercaptoethanol up to 100 mM, whereas [3H]cocaine binding was inhibited by concentrations above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol (< 1 mM). The effects of all these sulfhydryl reagents suggest that the DA transporter has one or more thiol group(s) important for both binding and uptake activities. The Ellman reagent and dithiopyridine were effective inhibitors of uptake and binding only at fairly high concentration (>10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation  相似文献   

17.
Use of microorganisms for removing mercury is an effective technology for the treatment of industrial wastewaters and can become an effective tool for the remediation of man-impacted coastal ecosystems with this metal. Nonviable biomass of an estuarine Bacillus sp. was employed for adsorbing Hg(II) ions from aqueous solutions at six different concentrations. It was observed that 0.2 g dry weight of nonviable biomass was found to remove from 0.023 mg (at 0.25 mg L(-1) of Hg(II)) to 0.681 mg (at 10.0 mg L(-1) of Hg(II)). Most of the mercury adsorption occurred during the first 20 min. It was found that changes in pH have a significant effect on the metal adsorption capacity of the bacteria, with the optimal pH value between 4.5 and 6.0 at 25 degrees C when solutions with 1.0, 5.0 and 10.0 mg L(-1) of Hg(II) were used.  相似文献   

18.
《Carbohydrate research》1988,172(1):1-10
Interaction of β-d-fructose with hydrated salts of zinc-group-metal has been studied in aqueous solution and solid adducts of the type M(d-fructose)X2·nH2O, where M = Zn(II), Cd(II), and Hg(II) ions, X = Cl or Br, and n = 0–2, have been isolated, and characterized by means of F.t.-i.r. spectroscopy, X-ray powder diffraction, and molar conductivity measurements. The marked spectral similarities observed with the Mg(d-fructose)X2·4 H2O (X = Cl or Br) compounds indicated that the Zn(II) and Cd(II) ions are six-coordinated, binding to two d-fructose molecules through O-2, O-3 of the first d-fructose, and O-4, O-5 of the second, as well as to two H2O. The Hg(II) ion binds to two sugar moieties in the same fashion as do the Zn(II) and Cd(II) ions, resulting in four-coordination geometry around the mercury ion. The crystalline sugar is in the β-d-fructopyranose form, and the coordination of the of the Ca(II) ion takes place through the β-d-fructopyranose isomer, whereas the binding of the Mg(II), Zn(II), Cd(II), Hg(II), and UO2+2 cations could be via the β-d-fructopyranose and the β-d-fructofuranose structures.  相似文献   

19.
Mercury toxicity in plants   总被引:5,自引:0,他引:5  
Mercury poisoning has become a problem of current interest as a result of environmental pollution on a global scale. Natural emissions of mercury form two-thirds of the input; manmade releases form about one-third. Considerable amounts of mercury may be added to agricultural land with sludge, fertilizers, lime, and manures. The most important sources of contaminating agricultural soil have been the use of organic mercurials as a seed-coat dressing to prevent fungal diseases in seeds. In general, the effect of treatment on germination is favorable when recommended dosages are used. Injury to the seed increases in direct proportion to increasing rates of application. The availability of soil mercury to plants is low, and there is a tendency for mercury to accumulate in roots, indicating that the roots serve as a barrier to mercury uptake. Mercury concentration in aboveground parts of plants appears to depend largely on foliar uptake of Hg0 volatilized from the soil. Uptake of mercury has been found to be plant specific in bryophytes, lichens, wetland plants, woody plants, and crop plants. Factors affecting plant uptake include soil or sediment organic content, carbon exchange capacity, oxide and carbonate content, redox potential, formulation used, and total metal content. In general, mercury uptake in plants could be related to pollution level. With lower levels of mercury pollution, the amounts in crops are below the permissible levels. Aquatic plants have shown to be bioaccumulators of mercury. Mercury concentrations in the plants (stems and leaves) are always greater when the metal is introduced in organic form. In freshwater aquatic vascular plants, differences in uptake rate depend on the species of plant, seasonal growthrate changes, and the metal ion being absorbed. Some of the mercury emitted from the source into the atmosphere is absorbed by plant leaves and migrates to humus through fallen leaves. Mercury-vapor uptake by leaves of the C3 speciesoats, barley, and wheat is five times greater than that by leaves of the C4 species corn, sorghum, and crabgrass. Such differential uptake by C3 and C4 species is largely attributable to internal resistance to mercury-vapor binding. Airborne mercury thus seems to contribute significantly to the mercury content of crops and thereby to its intake by humans as food. Accumulation, toxicity response, and mercury distribution differ between plants exposed through shoots or through roots, even when internal mercury concentrations in the treated plants are similar. Throughfall and litterfall play a significant role in the cycling and deposition of mercury. The possible causal mechanisms of mercury toxicity are changes in the permeability of the cell membrane, reactions of sulphydryl (-SH) groups with cations, affinity for reacting with phosphate groups and active groups of ADP or ATP, and replacement of essential ions, mainly major cations. In general, inorganic forms are thought to be more available to plants than are organic ones. Plants can be exposed to mercurials either by direct administration as antifungal agents, mainly to crop plants through seed treatment or foliar spray, or by accident. The end points screened are seed germination, seedling growth, relative growth of roots and shoots, and, in some case, studies of leaf-area index, internode development, and other anatomical characters. Accidental exposures occur through soil, water, and air pollution. The level of toxicity is usually tested under laboratory conditions using a wide range of concentrations and different periods of exposure. Additional parameters include biochemical assays and genetical studies. The absorption of organic and inorganic mercury from soil by plants is low, and there is a barrier to mercury translocation from plant roots to tops. Thus, large increases in mercury levels in soil produce only modest increases in mercury levels in plants by direct uptake from soil. Injuries to cereal seeds caused by organic mercurials has been characterized by abnormal germination and hypertrophy of the roots and coleoptile. Mercury affects both light and dark reactions of photosynthesis. Substitution of the central atom of chlorophyll, magnesium, by mercury in vivo prevents photosynthetic light harvesting in the affected chlorophyll molecules, resulting in a breakdown of photosynthesis. The reaction varies with light intensity. A concentration and time-dependent protective effect of GSH seems to be mediated by the restricted uptake of the metal involving cytoplasmic protein synthesis. Plant cells contain aquaporins, proteins that facilitate the transport of water, in the vacuolar membrane (tonoplast) and the plasma membrane. Many aquaporins are mercury sensitive, and in AQP1 a mercury-sensitive cysteine residue (Cys-189) is present adjacent to a conserved Asn-Pro-Ala motif. At low concentrations mercury has a toxic effect on the degrading capabilities of microorganisms. Sensitivity to the metal can be enhanced by a reduction in pH, and tolerance of mercury by microorganisms has been found to be in the order: total population > nitrogen fixers > nitrifiers. Numerous experiments have been carried out to study the genetic effects of mercury compounds in experimental test systems using a variety of genetic endpoints. The most noticeable and consistent effect is the induction of c-mitosis through disturbance of the spindle activity, resulting in the formation of polyploid and aneuploid cells and c-tumors. Organomercurials have been reported to be 200 times more potent than inorganic mercury. Exposure to inorganic mercury reduces mitotic index in the root-tip cells and increases the frequency of chromosomal aberrations in degrees directly proportional to the concentrations used and to the duration of exposure. The period of recovery after removal of mercury is inversely related to the concentration and duration of exposure. Bacterial plasmids encode resistance systems for toxic metal ions, including Hg2+, functioning by energy-dependent efflux of toxic ions through ATPases and chemiosmotic cationproton antiporters. The inducible mercury resistance (mer) operon encodes both a mercuric ion uptake and detoxification enzymes. In gram-negative bacteria a periplasmic protein,MerP, an inner-membrane transport protein,MerT, and a cytoplasmic enzyme, mercuric reductase, theMerA protein, are responsible for the transport of mercuric ions into cells and their reduction to elemental mercury, Hg(II). InThiobacillus ferrooxidans, an acidophilic chemoautotrophic bacterium sensitive to mercury ions, a group of mercury-resistant strains, which volatilize mercury, has been isolated. The entire coding sequence of the mercury-ion resistance gene has been located in a 2.3 kb fragment of chromosomal DNA (encoding 56,000 and 16,000 molecular-weight proteins) from strain E-l 5 ofEscherichia coli. Higher plants andSchizosaccharomyces pombe respond to heavy-metal stress of mercury by synthesizing phytochelatins (PCs) that act as chelators. The strength of Hg(II) binding to glutathione and phytochelatins follows the order: γGlu-Cys-Gly(γGlu-Cys)2Gly(γGlu-Cys)3Gly(γGlu-Cys)4Gly. Suspension cultures of haploid tobacco,Nicotiana tabacum, cells were subjected to ethyl methane sulfonate to raise mercury-tolerant plantlets. HgCl2-tolerant variants were selected from nitrosoguanidine (NTG)-treated suspension cell cultures of cow pea,Vigna unguiculata, initiated from hypocotyl callus and incubated with 18 ⧎g/ml HgCl2. Experiments have been carried out to develop mercury-tolerant plants ofHordeum vulgare through previous exposure to low doses of mercury and subsequent planting of the next generation in mercury-contaminated soil. Phytoremediation involves the use of plants to extract, detoxify, and/or sequester environmental pollutants from soil and water. Transgenic plants cleave mercury ions from methylmercury complexes, reduce mercury ions to the metallic form, take up metallic mercury through their roots, and evolve less toxic elemental mercury. Genetically engineered plants contain modified forms of bacterial genes that break down methyl mercury and reduce mercury ions. The first gene successfully inserted into plants wasmerA, which codes for a mercuric ion reductase enzyme, reducing ionic mercury to the less toxic elemental form.MerB codes for an organomercurial lyase protein that cleaves mercury ions from highly toxic methyl mercury compounds. Plants with themerB gene have been shown to detoxify methyl mercury in soil and water. Both genes have been successfully expressed inArabidopsis thaliana, Brassica (mustard),Nicotiana tabacum (tobacco), andLiriodendron tulipifera (tulip poplar). Plants currently being transformed include cattails, wild rice, andSpartina, another wetland plant. The problem of mercury contamination can be reduced appreciably by combining the standard methods of phytoremediation—removal of mercury from polluted areas through scavenger plants—with raising such plants both by routine mutagenesis and by genetic engineering. The different transgenics raised utilizing the two genesmerA andmerB are very hopeful prospects.  相似文献   

20.
The effects of nonmetabolic bacterial cell wall adsorption and the presence of bacterial exudates on the precipitation of mineral phases from solution is not well constrained experimentally. In this study, we measured the extent of Hg(II) removal from solution, in the presence and absence of nonmetabolizing cells of Bacillus subtilis in both Cl-free and Cl-bearing systems with Hg concentrations ranging from undersaturation to supersaturation with respect to montroydite [HgO(s)]. Total Hg molalities ranged from 10?5.00 to 10?2.00 M at pH 4.50 and 7.00; the ionic strength of the experiments was kept constant using 0.01 M NaClO4, and the wet mass of bacteria was held constant at 5 g/L for each biotic experiment.

The biotic systems exhibited enhanced Hg(II) removal from solution relative to the abiotic controls in undersaturated conditions. However, thermodynamic modeling of the experimental systems strongly suggests that all of this Hg removal can be ascribed to Hg adsorption onto cell envelope functional groups. There was no evidence for enhanced Hg removal due to precipitation in bulk solutions that were undersaturated with respect to the solid phase. Under the highest total Hg concentrations studied in both the Cl-free and Cl-bearing systems, bacteria inhibit precipitation, maintaining high concentrations of Hg in solution. Cell-free, exudate-bearing control experiments suggest that aqueous complexation between Hg and the bacterially-produced exudates accounts for at least some of the precipitation inhibition. However, a comparison of total available binding sites on the exudates with the concentration of Hg in solution suggests that aqueous complexation alone can not account for the observed elevated final aqueous Hg concentrations in solution, and that the exudates likely exert a kinetic inhibition on the precipitation reaction as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号