共查询到20条相似文献,搜索用时 15 毫秒
1.
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons. 相似文献
2.
Hanqing Feng Dongdong Guan Jingyue Bai Kun Sun Lingyun Jia 《Molecular Plant Pathology》2015,16(6):633-639
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area. 相似文献
3.
Alfonso Saera-Vila Phillip E. Kish Ke'ale W. Louie Steven J. Grzegorski Daniel J. Klionsky 《Autophagy》2016,12(10):1864-1875
Cell identity involves both selective gene activity and specialization of cytoplasmic architecture and protein machinery. Similarly, reprogramming differentiated cells requires both genetic program alterations and remodeling of the cellular architecture. While changes in genetic and epigenetic programs have been well documented in dedifferentiating cells, the pathways responsible for remodeling the cellular architecture and eliminating specialized protein complexes are not as well understood. Here, we utilize a zebrafish model of adult muscle regeneration to study cytoplasmic remodeling during cell dedifferentiation. We describe activation of autophagy early in the regenerative response to muscle injury, while blocking autophagy using chloroquine or Atg5 and Becn1 knockdown reduced the rate of regeneration with accumulation of sarcomeric and nuclear debris. We further identify Casp3/caspase 3 as a candidate mediator of cellular reprogramming and Fgf signaling as an important activator of autophagy in dedifferentiating myocytes. We conclude that autophagy plays a critical role in cell reprogramming by regulating cytoplasmic remodeling, facilitating the transition to a less differentiated cell identity. 相似文献
4.
5.
I A Viringipurampeer X Shan K Gregory-Evans J P Zhang Z Mohammadi C Y Gregory-Evans 《Cell death and differentiation》2014,21(5):665-675
Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6cw59 mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6cw59 embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6cw59 mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment. 相似文献
6.
neuroD is a member of the family of proneural genes, which function to regulate the cell cycle, cell fate determination and cellular differentiation. In the retinas of larval and adult teleosts, neuroD is expressed in two populations of post-mitotic cells, a subset of amacrine cells and nascent cone photoreceptors, and proliferating cells in the lineages that give rise exclusively to rod and cone photoreceptors. Based on previous studies of NeuroD function in vitro and the cellular pattern of neuroD expression in the zebrafish retina, we hypothesized that within the mitotic photoreceptor lineages NeuroD selectively regulates aspects of the cell cycle. To test this hypothesis, gain and loss-of-function approaches were employed, relying on the inducible expression of a NeuroDEGFP fusion protein and morpholino oligonucleotides to inhibit protein translation, respectively. Conditional expression of neuroD causes cells to withdraw from the cell cycle, upregulate the expression of the cell cycle inhibitors, p27 and p57, and downregulate the cell cycle progression factors, Cyclin B1, Cyclin D1, and Cyclin E2. In the absence of NeuroD, cells specific for the rod and cone photoreceptor lineage fail to exit the cell cycle, and the number of cells expressing Cyclin D1 is increased. When expression is ectopically induced in multipotent progenitors, neuroD promotes the genesis of rod photoreceptors and inhibits the genesis of Müller glia. These data show that in the teleost retina NeuroD plays a fundamental role in photoreceptor genesis by regulating mechanisms that promote rod and cone progenitors to withdraw from the cell cycle. This is the first in vivo demonstration in the retina of cell cycle regulation by NeuroD. 相似文献
7.
Programmed cell death (PCD) plays a central role in the sculpting and maturation of developing epithelia. In adult tissue, PCD plays a further role in the prevention of malignancy though removal of damaged cells. Here, we report that mutations in klumpfuss result in an excess of support cells during maturation of the developing Drosophila pupal retina. These ectopic cells are the result of a partial and specific failure of apoptotic death during normal cell fate selection. klumpfuss is required and differentially expressed in the cells that choose the life or death cell fate. We also provide genetic and biochemical evidence that klumpfuss regulates this process through down-regulation of the Epidermal Growth Factor Receptor/dRas1 signaling pathway. Based on its sequence Klumpfuss is an EGR-class nuclear factor, and our results suggest a mechanism by which mutations in EGR-class factors such as Wilms' Tumor Suppressor-1 may result in oncogenic events such as pediatric kidney tumors. 相似文献
8.
J. Gómez C. Martínez-A A. Rebollo 《Apoptosis : an international journal on programmed cell death》1996,1(3):175-182
Oncoproteins of the Ras family have been extensively studied because of their implication in human cancer. Their roles have been primarily assigned to the commandment of cell proliferation and suppression of apoptosis, which has also been demonstrated by the involvement of Ras activation in the signal transduction pathways triggered by most cytokine receptors. Nevertheless, the functions of Ras proteins have been extended in the last years by the findings showing that they can also act as promoters or enhancers of apoptosis in various systems and conditions. These considerations have raised the issue as to how the signals delivered by Ras are regulated and translated in terms of cellular responses, suggesting that signal complementation may direct the final fate of cells. As an example, the interleukin-2 receptor system may represent a useful model in which the meaning of Ras signals may be evaluated in terms of interactions with other simultaneous signalling events, since knowledge of the biochemical events triggered by the interaction of interleukin-2 with its cell surface receptor in lymphocytes has allowed the proposal of a complete signalling model arranged in three independent channels, one of which is mediated by Ras.This work was supported by grants from CICYT and Pharmacia-Upjohn. 相似文献
9.
Summary All species of desiccation tolerant angiosperms studied conserved some ATP in air-dry viable leaves. Otherwise there was no uniformity of response to drying: ATP content remained high in some species, but fell markedly in the others. ATP levels stayed high in Boea hygroscopica and Borya constricta until relative water content fell below 30%. ATP content recovered in the first 2 h of rehydration in Boea, but recovery was gradual in Borya, taking more than 16 h.Abbreviations
ADP
adenosine 5-diphosphate
-
ATP
adenosine 5-triphosphate
-
BES
N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid
-
HEPES
N-2-hydroxyethylpiperazine-N1-2-ethanesulfonic acid
-
RH
relative humidity
-
RWC
relative water content 相似文献
10.
11.
The survival and death rates of inflammatory cells directly control their number and are substantially associated with the degree of inflammation. Microglia, key players in neuroinflammation, often cause excessive reactions implicated in neurological diseases. However, the mechanisms that determine microglial fate under pathological conditions remain to be elucidated. Here, we report that activation by lipopolysaccharide (LPS, a Toll-like receptor 4 ligand), an inflammation inducer, primarily promotes survival of microglia, but as its concentration is increased it induces cell death, resulting in decreased cell number. Moreover, extracellular ATP, which is released upon tissue damage, further enhanced the survival induced by a low LPS concentration and the death induced by a high LPS concentration. The survival-promoting effect of ATP was mimicked by non-hydrolyzable ATP analog, adenosine 5'-O-(3-thiotriphosphate), and also by the P2X(7) receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, and was suppressed by the P2X(7) antagonists, Brilliant Blue G and A 438079. On the contrary, the death of LPS-activated microglia was not affected by adenosine 5'-O-(3-thiotriphosphate), but enhanced by adenosine, ATP breakdown product. Thus, extracellular ATP modulates microglial survival and death in different ways involving P2X(7) receptor activation and ATP degradation to adenosine, respectively. Such Toll-like receptor 4/purinergic signaling may provide a fine regulatory system of neuroinflammation through modulating the microglial cell number. 相似文献
12.
Wong RP Aguissa-Touré AH Wani AA Khosravi S Martinka M Martinka M Li G 《Pigment cell & melanoma research》2012,25(2):213-218
The E3 ligase Rad18 is a key regulator for the lesion bypass pathway, which plays an important role in genomic stability. However, the status of Rad18 expression in melanoma is not known. Using melanoma tissue microarray (TMA), we showed that nuclear Rad18 expression was upregulated in primary and metastatic melanoma compared to dysplastic nevi. Rad18 expression was significantly reduced in sun-exposed sites compared to the sun-protected sites. Strong Rad18 expression correlated with worse 5-year patient survival and was an independent prognostic factor for melanoma found in the sun-protected sites. Furthermore, we showed that melanoma cell proliferation and the expression of pAkt and cyclin D1 were reduced upon Rad18 knockdown. We, for the first time, showed that Rad18 is significantly increased in melanoma and predicts the poor outcome for melanoma in the sun-protected sites. Rad18 is involved in the regulation of melanoma cell proliferation, which can be exploited in designing new strategy for melanoma treatment. 相似文献
13.
14.
Martin Klingenberg 《Journal of bioenergetics and biomembranes》1993,25(5):447-457
A concise review is given of the research in our laboratory on the ADP/ATP carrier (AAC) and the uncoupling protein (UCP). Although homologous proteins, their widely different functions and contrasts are stressed. The pioneer role of research on the AAC, not only for the mitochondrial but also for other carriers, and the present state of their structure-function relationship is reviewed. The function of UCP as a highly regulated H+ carrier is described in contrast to the largely unregulated ADP/ATP exchange in AAC. General principles of carrier catalysis as derived from studies on the AAC and UCP are elucidated. 相似文献
15.
James M. Fadool Susan E. Brockerhoff George A. Hyatt John E. Dowling 《Genesis (New York, N.Y. : 2000)》1997,20(3):288-295
The zebrafish (Danio rerio) has received considerable attention as a mainstream model for the molecular and genetic study of vertebrate development. In our laboratory, we have conducted a third-generation screen of chemically mutagenized zebrafish for recessive mutations affecting the visual system. This report describes the visible phenotypes and number of morphological mutants so far observed and presents a more detailed histological analysis of six of these mutations. Through analysis of mutant larvae, it was determined that several of the subtle morphological mutations resulted in degeneration of specific cellular layers of the retina. Other mutations resulted in some degeneration distributed diffusely across the entire retina or concentrated at the retinal margin. A single mutation affecting invagination of the optic cup and lens vesicle formation resulted in a failure to develop an anterior chamber. These results demonstrate the utility of a small-scale, highly focused screen for uncovering novel loci involved in retinal and eye development. Dev. Genet. 20:288–295, 1997. © 1997 Wiley-Liss, Inc. 相似文献
16.
Ientile R Macaione V Teletta M Pedale S Torre V Macaione S 《Journal of neurochemistry》2001,79(1):71-78
Excitotoxic studies using isolated chick embryo retina indicated that such an in vitro model provides a valid tool to characterize the effect of different agonists for subtypes of glutamate ionotropic receptors. In retinas maintained for 24 h in a Krebs medium, after a brief exposure (30 min) to glutamate agonists, we compared the effects produced by NMDA and non-NMDA-agonists, such as kainic acid (KA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Delayed retinal damage was assessed by measuring lactate dehydrogenase (LDH) present in the medium after exposure to the previously named agonists. Although at high concentrations, both KA and AMPA produced more relevant release than NMDA, 7-8% of total retinal LDH was released after exposure to a 50 microM concentration of non-NMDA agonists. These values were similar to those obtained after 100 microM NMDA. In this regard, retinal tissue appeared to be less sensitive to excitotoxicity based on the activation of NMDA receptor subtype. All three agents produced histopathological lesions typical for excitotoxic damage. A delayed form of excitotoxicity observed in retina segments was predominated by necrotic features. However, the activation of apoptotic machinery early during the incubation period subsequent to brief exposure to NMDA (100 microM) was also present. The activation of caspase enzymes was studied by a fluorometric protease activity assay as well as by western blot analysis. Caspase-3-like activity reached the highest value within 3 h of incubation after exposure to excitotoxin, then the level of enzyme activity declined to lower values. As confirmed by a time-related appearance of TUNEL-positive nuclei, apoptotic features appeared to be specific for retina response to NMDA. In contrast, the exposure to a 50 microM concentration of KA or AMPA induced necrotic cell damage which was evident through the incubation, leading to a delayed mechanism of excitotoxicity. These observations provide evidence that in the retinal model, with regard to agonist concentrations and subtype of glutamate receptors, the cascade of events leading to excitotoxicity may result in either apoptotic or necrotic neuronal cell damage. 相似文献
17.
Executioner caspases such as Caspase-3 and Caspase-7 have long been recognised as the key proteases involved in cell demolition during apoptosis. Caspase activation also modulates signal transduction inside cells, through activation or inactivation of kinases, phosphatases and other signalling molecules. Interestingly, a series of recent studies have demonstrated that caspase activation may also influence signal transduction and gene expression changes in neighbouring cells that themselves did not activate caspases. This review describes the physiological relevance of paracrine Caspase-3 signalling for developmental processes, tissue homeostasis and tissue regeneration, and discusses the role of soluble factors and microparticles in mediating these paracrine activities. While non-cell autonomous control of tissue regeneration by Caspase-3 may represent an important process for maintaining tissue homeostasis, it may limit the efficiency of current cancer therapy by promoting cell proliferation in those cancer cells resistant to radio- or chemotherapy. We discuss recent evidence in support of such a role for Caspase-3, and discuss its therapeutic implication. 相似文献
18.
Cells with overactive RAS /protein kinase A (PKA) signaling, such as RAS2Val19 cells, exhibit reduced proliferation rates and accelerated replicative senescence. We show here that the extended generation time of RAS2Val19 cells is the result of abrogated ATP/ADP carrier activity of the mitochondria. Both PKA-dependent and independent routes are responsible for inhibiting ATP/ADP exchange in the RAS -overactive cells. The reduced carrier activity is due, at least in part, to elevated levels of reactive oxygen species (ROS), which also cause a proteolysis-dependent fragmentation of the Aac2p carrier both in vivo and on isolated mitochondria. Attenuated carrier activity is suppressed by overproducing the superoxide dismutase, Sod1p, and this enhances both the proliferation rate and the replicative longevity of RAS2Val19 cells. In contrast, overproducing functional Aac2p restored proliferation but not longevity of RAS2Val19 cells. Thus, Ras signaling affects proliferation rate and replicative lifespan by two different, ROS-dependent, routes. While the reduction in generation time is linked to the inactivation, specifically, of the mitochondrial nucleotide carrier, longevity is affected by other, and hitherto unknown, target(s) of ROS attack. 相似文献
19.
20.
Phuong Thi Mai Nguyen Yuki Ishiwata-Kimata 《Bioscience, biotechnology, and biochemistry》2019,83(5):824-828
PercevalHR (Perceval High Resolution) is an artificially designed fluorescent protein, which changes its excitation spectrum based on the ADP/ATP ratio of the environment. Here we demonstrated that PercevalHR can be used for monitoring energy status of Saccharomyces cerevisiae cells, which are affected by diauxic shift and mitochondria inhibition, in a non-invasive and non-destructive manner. 相似文献