首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we have examined the transport of polyamines in cultured cerebellar granule cells. Our results suggest the existence of two different transporters for polyamines in these neurons. Putrescine and spermidine uptake (K ap m = 2.17 and 1.39 microM, respectively), were affected when extracellular sodium was replaced with choline (about 30% inhibition over controls) or sucrose (about 2.5-fold potentiation over controls). By contrast, the substitution of sodium by choline or sucrose did not modify spermine uptake (K ap m = 13.53 microM) in cerebellar granule cells. Accordingly, alteration of membrane potential with ouabain was able to block putrescine (50% inhibition) and spermidine (60% inhibition) uptake but not spermine uptake. These results indicate that putrescine and spermidine transport in cerebellar granule cells is membrane potential dependent, whereas spermine uptake is not modulated by membrane potential.  相似文献   

2.
Cultured cerebellar granule neurons exposed to gradual reductions in osmolarity (-1.8 mOsm/min) maintained constant volume up to -50% external osmolarity (pi(o)), showing the occurrence of isovolumetric regulation (IVR). Amino acids, Cl-, and K+ contributed at different phases of IVR, with early efflux threshold for [3H]taurine, D-[3H]aspartate (as marker for glutamate) of pi(o) -2% and -19%, respectively, and more delayed thresholds of -30% for [3H]glycine and -25% and -29%, respectively, for Cl- (125I) and K+ (86Rb). Taurine seems preferentially involved in IVR, showing the lowest threshold, the highest efflux rate (five-fold over other amino acids) and the largest cell content decrease. Taurine and Cl- efflux were abolished by niflumic acid and 86Rb by 15 mM Ba2+. Niflumic acid essentially prevented IVR in all ranges of pi(o). Cl--free medium impaired IVR when pi(o) decreased to -24% and Ba2+ blocked it only at a late phase of -30% pi(o). These results indicate that in cerebellar granule neurons: (i) IVR is an active process of volume regulation accomplished by efflux of intracellular osmolytes; (ii) the volume regulation operating at small changes of pi(o) is fully accounted for by mechanisms sensitive to niflumic acid, with contributions of both Cl- and amino acids, particularly taurine; (iii) Cl- contribution to IVR is delayed with respect to other niflumic acid-sensitive osmolyte fluxes (osmolarity threshold of -25% pi(o)); and (iv), K+ fluxes do not contribute to IVR until a late phase (< -30% pi(o)).  相似文献   

3.
The content and composition of gangliosides in cultures enriched in granule neurones and in astrocytes from rat cerebellum (P6–8) showed marked differences; astrocytes contained less than 10% of the amount of granule neurones and the profile was dominated by simple gangliosides with lactosyl ceramide backbone, while gangliosides of the b series, which constitute about 40% in nerve cells, were virtually undetectable. Granule cell maturation was accompanied by a 16-fold increase in the ganglioside content during the initial 8 days in a serum-supplemented medium (S+), reaching a plateau much earlier and at a higher level than observed in the cerebellum in vivo. Developmental changes were characterized, as in vivo, by a pronounced decrease in the GD3 proportion and an increase in the b series of gangliosides. Compared with S+, adhesion among cells and fibres is different in a serum-free medium (S) in which the rise in cellular ganglioside content was less (30%) but the developmental changes in ganglioside profile were similar. However, in cultures in S only, GM3 was not detectable, while the distribution of GM1 and GD3 indicated that maturation is retarded relative to cells in S+. Surface exposure of gangliosides (studied by the periodate/[3H]borohydride method) was similar under the two culture conditions. There was an initial delay, especially in S, in the insertion of gangliosides into the plasma membrane, while the labelling of GD3 (the dominant ganglioside of immature granule cells) was very low compared with all the other species throughout the whole cultivation time.Special issue dedicated to Dr. Frederick E. Samson.  相似文献   

4.
白介素-6保护小脑颗粒神经元抗谷氨酸的神经毒性作用   总被引:2,自引:0,他引:2  
目的:探讨白介素-6(IL-6)对谷氨酸诱导的神经元损伤的防治作用及其作用机制。方法:用IL-6慢性预处理培养的小脑颗粒神经元,然后后用谷氨酸急性刺激小脑颗粒神经元。用噻唑兰(MTT)比色法和末端脱氧核苷酸转移酶介导的原位缺口末端标记(TUNEL)法分别观察神经元的功能和凋亡的变化;用激光扫描共聚焦显微镜(LSCM)和逆转录聚合酶链式反应(RT—PCR)法分别检测神经元内Ca^2+浓度的动态变化和IL-6信号转导蛋白gp130 mRNA的表达。结果:IL-6(2.5、5和10ng/ml)慢性预处理培养的小脑颗粒神经元,可浓度依赖性地改善谷氨酸诱导的神经元活性降低;并可明显减少谷氨酸诱导的神经元凋亡;还可显著抑制谷氨酸激发的神经元内Ca^2+超载。此外。经IL-6慢性预处理的小脑颗粒神经元表达gp130mRNA明显低于未经IL-6预处理的神经元。结论:IL-6能保护神经元抵抗由谷氨酸诱导的兴奋毒性作用,IL-6的这种神经保护机制可能与它抑制神经元内Ca^2+超载密切相关,而且可能由gp130细胞内信号转导途径介导。  相似文献   

5.
Dantrolene is an inhibitor of a skeletal muscle subtype of ryanodine receptors that stabilizes intracellular calcium concentrations and exerts neuroprotective effects in neurons submitted to excitotoxic challenges. The mechanisms of dantrolene-induced neuroprotection are not clear. In this study, using a model of cultured rat cerebellar granule neurons, we demonstrated that dantrolene inhibits NMDA-evoked 45Ca uptake, indicating that this drug may inhibit the activity of NMDA receptor channels. Primary neuronal cultures were incubated for 10 min in Mg(2+)-free ionic medium with NMDA and 45Ca in the presence of different concentrations of dantrolene, then radioactivity in neurons was measured by liquid scintillation spectroscopy. The results demonstrated that dantrolene, applied at micromolar concentrations, inhibits NMDA-evoked 45Ca uptake in neurons in a dose-dependent manner. DMSO, a vehicle to dantrolene, in concentrations used in this study had no effect on NMDA-evoked 45Ca uptake. These results, indicating that dantrolene inhibits activation of the NMDA receptors, might at least partially explain the mechanisms of a dantrolene-evoked protection of neurons against excitotoxicity mediated by agonists of NMDA receptors.  相似文献   

6.
The GABAA receptor beta subunit is required to confer sensitivity to gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. In previous studies we demonstrated that the growth and differentiation factor neuregulin 1 (NRG1) selectively induced expression of the beta2 subunit mRNA and encoded protein in rat cerebellar granule neurons in culture. In the present report we examine the signaling pathways that mediate this effect. These studies demonstrate that the effects of NRG1 on beta2 subunit polypeptide expression require activation of the ErbB4 receptor tyrosine kinase; its effects are inhibited by pharmacological blockade of ErbB4 phosphorylation or reduction of receptor level with an antisense oligodeoxynucleotide. The NRG1-induced activation of ErbB4 stimulates the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and cyclin-dependent kinase-5 (cdk5) pathways. Pharmacological blockade of any of these pathways inhibits increased beta2 subunit expression, demonstrating that all three pathways are required to mediate the effects of NRG1 on GABAA receptor subunit expression in cerebellar granule neurons. These studies provide novel information concerning the actions of NRG1 on GABAA receptor expression in the CNS.  相似文献   

7.
Cerebellar granule neurons (CGN) cultured in a medium containing 25 mM KCl and treated with staurosporine (ST) or transferred to a medium with 5 mM KCl (K5) die apoptotically. CGN death is mediated by an increase in reactive oxygen species (ROS) production. When CGN are treated with antioxidants all apoptotic parameters and cell death are markedly diminished, showing a central role for ROS in this process. Recently, it has been suggested that a possible ROS source involved in cell death is a NADPH oxidase. In that regard, we found expression in CGN of the components of NADPH proteins, p40phox, p47phox and p67phox, and p22phox, as well as three homologues of the catalytic subunit of this complex, NOX1, 2, and 4. The inhibition of NADPH oxidase with diphenylene iodonium or 4-(2-aminoethyl)benzenesulfonyl fluoride significantly reduced ROS production, NADPH oxidase activity, all the apoptotic events, and cell death induced by both K5 and ST. We conclude that ROS could be an early signal of apoptotic neuronal death and that NADPH oxidase, including NOX1, 2, and/or 4, could have a central role in apoptotic death induced by different conditions in these neurons.  相似文献   

8.
We have defined conditions whereby glutamate becomes toxic to isolated cerebellar granule neurons in a physiologic salt solution (pH 7.4). In the presence of a physiologic Mg++ concentration, acute glutamate excitotoxicity manifests only when the temperature was reduced from 37°C to 22°C. In contrast to glutamate, N-methyl-D-aspartate (NMDA) was non-toxic at either temperature at concentrations as high as 1 mM. Glycine strongly potentiated both the potency and efficacy of glutamate but revealed only a modest NMDA response. The non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxalinedione (CNQX), potently protected against glutamate challenge, although the contribution of antagonism at strychnine-insensitive glycine sites could not be excluded. To further characterize the non-NMDA receptor contribution to the excitotoxic response, the promiscuity of glutamate interaction with ionotropic receptors was simulated by exposing neurons to NMDA in the presence of non-NMDA receptor agonists. NMDA toxicity was potentiated four- to sevenfold when non-NMDA receptors were coactivated by a subtoxic concentration of AMPA, kainate, or domoate. These results suggest that non-NMDA receptor activation participates in the mechanism of acute glutamate toxicity by producing neuronal depolarization (via sodium influx), which in turn promotes the release of the voltage-dependent magnesium blockade of NMDA receptor ion channels. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
This study was performed to analyze the effects of the barbiturate thiopental on neuronal glutamate uptake, release and metabolism. Since barbiturates are known to bind to the GABA(A) receptor, some experiments were carried out in the presence of GABA. Cerebellar granule neurons were incubated for 2 h in medium containing 0.25 mM [U-(13)C]glutamate, 3 mM glucose, 50 microM GABA and 0.1 or 1 mM thiopental when indicated. When analyzing cell extracts, it was surprisingly found that in addition to glutamate, aspartate and glutathione, GABA was also labeled. In the medium, label was observed in glutamate, aspartate and lactate. Glutamate exhibited different labeling patterns, indicating metabolism in the tricarboxylic acid cycle, and subsequent release. A net uptake of [U-(13)C]glutamate and unlabeled glucose was seen under all conditions. The amounts of most metabolites synthesized from [U-(13)C]glutamate were unchanged in the presence of GABA with or without 0.1 mM thiopental. In the presence of 1 mM thiopental, regardless of the presence of GABA, decreased amounts of [1,2, 3-(13)C]glutamate and [U-(13)C]aspartate were found in the medium. In the cell extracts increased [U-(13)C]glutamate, [1,2, 3-(13)C]glutamate, labeled glutathione and [U-(13)C]aspartate were observed in the 1 mM thiopental groups. Glutamate efflux and uptake were studied using [(3)H]D-aspartate. While efflux was substantially reduced in the presence of 1 mM thiopental, this barbiturate only marginally inhibited uptake even at 3 mM. These results may suggest that the previously demonstrated neuroprotective action of thiopental could be related to its ability to reduce excessive glutamate outflow. Additionally, thiopental decreased the oxidative metabolism of [U-(13)C]glutamate but at the same time increased the detectable metabolites derived from the TCA cycle. These latter effects were also exerted by GABA.  相似文献   

10.
Extracellular ATP and P2 receptors may play a crucial role in the neurodegeneration of the CNS. Here, we investigated in neuronal cerebellar granule cultures the biological effect of the quite stable P2 receptor agonist ATPgammaS and compare it to the cytotoxic action of ATP. Time-course experiments showed that 500 microM ATPgammaS causes 50-100% cell death in 15-24 h. As proved by pharmacological means, ATPgammaS toxicity apparently involves neither indirect activation of NMDA receptors, nor ectonucleotidase activities, nor nucleoside transport and intracellular purine metabolism. Moreover, ATPgammaS induces detrimental effects without modifying the expression of several P2X and P2Y receptor proteins. Cell death instead occurs after extracellular release of the cytosolic enzyme lactic dehydrogenase and inhibition of the overall activity of the intracellular dehydrogenases. Moreover, ATPgammaS causes transient outflow of cytochrome c from mitochondria (maximal 2.5-fold stimulation in 4 h), it raises the intracellular reactive oxygen species (about four-fold in 1 h) and cAMP levels (about 40% in 15 min-4 h). Among several P2 receptor antagonists, only pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium promotes 80-100% neuroprotection.  相似文献   

11.
Wnt signal transduction pathways   总被引:5,自引:0,他引:5  
The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca2+ pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis.Key words: Wnt, frizzled, dishevelled, canonical, non-canonical, β-catenin, Planar Cell Polarity  相似文献   

12.
Leptin-induced signal transduction pathways   总被引:22,自引:0,他引:22  
Leptin is a multifunctional cytokine and hormone that primarily acts in the hypothalamus and plays a key role in the regulation of food intake and energy expenditure. In addition, it has direct effects on many cell types on the periphery. Leptin acts through its receptor, the product of the db gene, which has six isoforms. Only one of them (OB-Rb) has full signalling capabilities and is able to activate the Jak/STAT pathway, the major pathway used by leptin to exert its effects. However, some signalling events can be initiated by the short isoforms. Besides Jak/STAT, other pathways, such as MAPK and the 5'-AMP-activated protein kinase (AMPK) pathway, are also involved in leptin signalling. Leptin also interacts with insulin signalling. In this paper, we give an overview of the signal transduction mechanisms that are related to the actions of leptin.  相似文献   

13.
《Organogenesis》2013,9(2):68-75
The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/β-catenin dependent pathway and the non-canonical or β-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca2+ pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis.  相似文献   

14.
Axon formation in developing cerebellar granule neurons in situ is spatially and temporally segregated from subsequent neuronal migration and dendrite formation. To examine the role of local environmental cues on early steps in granule cell differentiation, the sequence of morphologic development and polarized distribution of membrane proteins was determined in granule cells isolated from contact with other cerebellar cell types. Granule cells cultured at low density developed their characteristic axonal and dendritic morphologies in a series of discrete temporal steps highly similar to those observed in situ, first extending a unipolar process, then long, thin bipolar axons, and finally becoming multipolar, forming short dendrites around the cell body. Axonal- and dendritic-specific cytoskeletal markers were segregated to the morphologically distinct domains. The cell surface distribution of a specific class of endogenous glycoproteins, those linked to the membrane by a glycosylphosphatidyl inositol (GPI) anchor, was also examined. The GPI-anchored protein, TAG-1, which is segregated to the parallel fiber axons in situ, was found exclusively on granule cell axons in vitro; however, two other endogenous GPI-anchored proteins were found on both the axonal and somatodendritic domains. These results demonstrate that granule cells develop polarity in a cell type-specific manner in the absence of the spatial cues of the developing cerebellar cortex. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 223–236, 1997.  相似文献   

15.
Himi T  Ishizaki Y  Murota SI 《Life sciences》2002,70(11):1235-1249
We examined the effects of 4,4′-diisothiocyano-2,2′-stilbenedisulfonate (DIDS), an inhibitor of the chloride-bicarbonate exchangers and chloride channels, on death in cultured cerebellar granule neurons. Various stimuli, such as reduction of extracellular K+ concentration, removal of growth factors, and staurosporine treatment, induced cell death. This death was blocked by DIDS in a dose dependent manner. In the presence of DIDS, the cells exposed to such stimuli did not show DNA fragmentation, but retained the ability to exclude trypan blue and to metabolize MTT to formazan. On the other hand, pretreatment of the cells with DIDS did not show any protective effects. The neuroprotective effect of DIDS was not influenced by extracellular Na+, Cl, HCO3 or Ca2+ concentrations, although reduction of extracellular Cl or Ca2+ concentrations per se induced neuronal death. Other chloride-bicarbonate exchange blockers like 4-acetamido-4′-isothiocyanatostilmene-2,2′-disulfonic acid (SITS) or 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS) showed no significant effects on neuronal survival under these death-inducing stimuli. Dimethylamiloride, an inhibitor of the Na+/H+ exchanger, did not influence neuronal death induced by these stimuli. Cells undergoing death showed gradual intracellular acidification, and DIDS did not inhibit this response, although DIDS (2 mM) per se induced transitory acidification followed by recovery within 10 min. DIDS did not influence intracellular Ca2+ or Cl levels during the lethal process. DIDS suppressed the cleavage of caspase-3 in the cells exposed to the death-inducing stimuli. These findings suggest that the neuroprotective effect of DIDS is mediated by a novel mechanism other than by nonselective inhibition of transporters or channels, and that DIDS blocks the death program upstream of caspases and downstream of all of the activation processes triggered by various stimuli.  相似文献   

16.
The adrenergic system is an essential regulator of neuronal, endocrine, cardiovascular, vegetative, and metabolic functions. The endogenous catecholamines epinephrine and norepinephrine activate G-protein-coupled receptors to transmit their signal across the plasma membrane. These adrenoceptors can be divided into three different groups: the α1-receptors (α1A, α1B, α1D), α2-receptors (α2A, α2B, α2C), and β-receptors (β1, β2, β3). This review summarizes recent findings in the field of adrenoceptor signaling in neurons and includes a discussion of receptor-associated proteins, receptor dimerization, subcellular trafficking, and fluorescence optical methods for studying the kinetics of adrenergic signaling. Spatio-temporal imaging may become an important future tool for identifying the physiological significance of these complex signaling mechanisms in vivo. Gene-targeted mouse models carrying deletions in α2-adrenoceptor have provided detailed insights into specific neuronal functions of the three α2-receptor subtypes.  相似文献   

17.
In this study, experiments were performed to characterize further the pathways responsible for neuronal death induced by endoplasmic reticulum (ER) stress in cultured hippocampal neurons (HPN) and cerebellar granule neurons (CGN) using tunicamycin (TM) and amyloid beta-peptide (Abeta). Exposure of HPN to Abeta or TM resulted in a time-dependent increase in the expression of 78-kDa glucose-regulated protein (GRP78) and caspase-12, an ER-resident caspase. In contrast, in CGN, although a drastic increase in the expression of GRP78 was found as was the case in HPN, no up-regulation of caspase-12 was detected. These results were consistent with immunohistochemical results that there were far lower number of caspase-12-positive cells in the cerebellum than in the cerebral cortex and hippocampus, and that caspase-12-positive cells were not identified in the external granule cell layer of the cerebellum of P7 rats. In CGN, a significant increase in the expression of C/EBP homologous protein (CHOP) protein was detected after exposure to Abeta or TM, whereas no such an increase in the protein expression was observed in HPN. In addition, S-allyl-L-cysteine (SAC), an organosulfur compound purified from aged garlic extract, protected neurons against TM-induced neurotoxicity in HPN but not in CGN, as in the case of Abeta-induced neurotoxicity. These results suggest that the pathway responsible for neuronal death induced by Abeta and TM in HPN differs from that in CGN, and that a caspase-12-dependent pathway is involved in HPN while a CHOP-dependent pathway is involved in CGN in ER stress-induced neuronal death.  相似文献   

18.
A significant advancement in our knowledge and understanding of wound-signaling pathways in plants has been made recently. Essential role in the explanation of these processes came from the genetic screens and analysis of mutants which are defective in either jasmonic acid (JA) biosynthesis, JA perception or systemin function. Plants equally react to wound in the tissues directly damaged (local response) as well as in the non-wounded areas (systemic response). Jasmonides and in particular the most studied JA, produced by the octadecanoid pathway, are responsible for the systemic response. Jasmonides functioning as long-distance signal particles transmit the information about wound to distant, non-wounded tissues where defense response is invoked. Peptyd - systemin, identified in some Solanaceous species, acts locally to the wounded area to elicit the production of JA. Jasmonic acid-dependent and -independent wound signal transduction pathways have been identified and partially characterized. JA-dependent wound signaling pathways are responsible for the activation of systemic responses, whereas JA-independent wound signaling pathways, activated close to wound side, have a role in reparation of damaged tissue and in defense against pathogens.  相似文献   

19.
20.
The phytochromes are the best studied plant photoreceptors, controlling a wide variety of responses at both whole plant and single cell levels. Three signal transduction pathways, dependent on cGMP and/or calcium, have been found to be utilized by phytochrome to control the expression of genes required for chloroplast development (e.g., CAB and FNR) and anthocyanin biosynthesis (e.g., CHS). In particular, cGMP is a second messenger positively regulating CHS gene expression whilst calcium and calmodulin act as negative regulators. In addition to phytochrome regulation of CHS we have begun to examine the signal transduction pathways utilized by UV photoreceptors. In contrast to phytochrome-mediated responses, results indicate a role for calcium and calmodulin as positive regulators of CHS gene expression in UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号