首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Treatment with neuronal growth factor (NGF) results in the growth of neuronal processes by PC12 cells and a concomitant 70% increase in the area of the Golgi apparatus. To define the observed morphologic changes in biochemical terms, we investigated the effect of NGF treatment on some Golgi and lysosomal enzyme activities of PC12 cells. Enzyme activities characteristic of the Golgi apparatus, lysosomes, plasma membranes, mitochondria, and endoplasmic reticulum were measured in cell homogenates, in post-mitochrondrial supernatants, and in Golgi-enriched fractions from control and from NGF-stimulated PC12 cells. Treatment of PC12 cells with NGF did not change the level of the Golgi activity of UDPGal:GlcNAc galactosyltransferase while that of CMP-sialic acid:lactosylceramide sialyltransferase was increased three- to fivefold in all fractions studied. For lysosomal enzymes, NGF treatment resulted in a two- to threefold higher level of arylsulfatase activity compared to either acid phosphatase or acid alpha-mannosidase activities. These results indicate that there is a selective increase of at least one Golgi and one lysosomal activity as a result of NGF stimulation of PC12 cells. Both of these enzymes are involved in glycolipid metabolism. It is possible that the dramatic morphologic changes observed during NGF-induced differentiation of PC12 cells are associated not only with increased synthesis in the Golgi apparatus of plasma membrane components such as gangliosides, but also with increased degradation in lysosomes of other plasma membrane components such as sulfatide.  相似文献   

2.
During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sar1p dominant inhibitor of cargo exit from the endoplasmic reticulum (ER), we found that the disassembly of the Golgi observed during mitosis or microtubule disruption did not appear to involve retrograde transport of Golgi residents to the ER and subsequent reorganization of Golgi membrane fragments at ER exit sites, as has been suggested. Instead, direct visualization of a green fluorescent protein (GFP)-tagged Golgi resident through mitosis showed that the Golgi ribbon slowly reorganized into 1–3-μm fragments during G2/early prophase. A second stage of fragmentation occurred coincident with nuclear envelope breakdown and was accompanied by the bulk of mitotic Golgi redistribution. By metaphase, mitotic Golgi dynamics appeared to cease. Surprisingly, the disassembly of mitotic Golgi fragments was not a random event, but involved the reorganization of mitotic Golgi by microtubules, suggesting that analogous to chromosomes, the Golgi apparatus uses the mitotic spindle to ensure more accurate partitioning during cytokinesis.  相似文献   

3.
Synopsis The fine structure and cytochemistry of the intestinal epithelial cell of the fowl have been investigated. The fine structure of the mature absorptive cell of the fowl duodenum was very similar to that described for man and other mammals. Minor differences were the thinner microvillous glycocalyx, the unusual length of the cells and their microvilli, and the wide distribution of lysosomal bodies. The membrane-associated enzymes alkaline phosphatase, ATPase (pH 7.2) and leucine naphthylamidase were mainly associated with the brush border; this organelle also gave positive reactions for mucopolysaccharides and phospholipids. No enzyme activities were found in the terminal web.The distribution of lysosomes between the terminal web and the Golgi apparatus was correlated with the granular localization of the lysosomal enzymes acid phosphatase, -glucuronidase and non-specific esterase. The mitochondrial enzyme succinate dehydrogenase was seen to be localized in rod-like dots which marked the distribution of mitochondria in the absorptive cell. The localization of mitochondrial ATPase (pH 9.4) was not clearly demonstrated because of diffusion artifacts. The region of the Golgi apparatus gave a strong reaction for thiamine pyrophosphatase, together with weak reactions for acid and alkaline phosphatases after extensive overincubation.The endoplasmic reticulum-associated enzymes glucose-6-phosphatase and nonspecific esterase were distributed throughout the absorptive cell, with a maximum activity apical to the Golgi apparatus. Additionally, the jejunal absorptive cells showed endoplasmic reticulum-as well as lysosomal-associated -glucuronidase.  相似文献   

4.
In rabbit luteal cells the transmost element (G2) of the Golgi apparatus bears cytochemical resemblances to the limiting membrane of lysosomes and it was suggested that lysosomal membranes may originate from the above element. But in the normal Golgi apparatus it cannot be made out whether the considered molecules are indeed membrane bound. Perfusing the rabbit ovary with buffer containing monensin or ammonium chloride allowed to vesiculate the trans Golgi network (G2-G1) selectively. Controls showed a well-preserved ultrastructure. Parts of the limiting membrane of the vacuoles derived from the transmost reticulum (G2) were spiny coated and carried an osmiophilic inner layer. They also showed a heavy precipitate for acid phosphatase (AcPase) and were strongly stained with phosphotungstic acid (PTA) at low pH. By neutralizing the acidic groups, involved in the PTA-staining, it was possible to show that the same membranes were more heavily glycosylated. The MvB's and the limiting membrane of lysosomes showed the same staining characteristics. The other membrane domains revealed a gradient in PTA staining and in AcPase activity. It is concluded that the trans Golgi network (G2-G1) is an acidic compartment. The presence of differentially glycosylated membranes reveals a sorting mechanism for membranous components. The highly glycosylated membrane stretches seem to be involved in endocytosis and in the formation of lysosomal membranes.  相似文献   

5.
In investigations on the intracellular transport route(s) of lysosomal enzymes in polarized epithelial cells, we used immunocytochemical methods to localize lysosomal alpha-glucosidase in human small-intestinal epithelial cells. Two monoclonal antibodies which can discriminate between different biosynthetic forms of this enzyme were used. One monoclonal antibody, 43D1, which recognizes all forms of the enzyme, showed labeling of the Golgi apparatus, the lysosomes and, unexpectedly, of the brush border of the cells. Multivesicular bodies were free of label. In contrast, monoclonal antibody 43G8, which recognizes all forms except the 110,000 Da precursor of alpha-glucosidase, showed labeling of the lysosomes only. This leads us to conclude that the 110,000 Da precursor form of alpha-glucosidase is present in the Golgi apparatus and the brush border of human small-intestinal epithelial cells. Moreover, biochemical experiments show that this precursor copurifies with sucrase, a typical brush-border marker, when a partially purified microvilli fraction is prepared.  相似文献   

6.
Summary More than twenty different enzyme activities of fractions containing dictyosome-like structures (DLS) as a dominant cell component were monitored. Plasma membrane vesicles were a major contaminant of the DLS fractions, which, presumably as a consequence, were enriched somewhat in plasma membrane markers. The lysosomal enzymes arylsulfatase and latent acid phosphatase were present in the DLS fractions as were the Golgi apparatus activities thiamine pyrophosphatase and nucleoside diphosphatase. The presence of the latter two enzymes in DLS, plus NADH-ferricyanide reductase, has been verified from cytochemistry. On the other hand, the Golgi apparatus marker, galactosyltransferase, was not enriched in DLS fractions and appeared to be absent. This latter finding, verified from cytochemistry with isolated DLS fractions and, in situ, from [3H]galactose incorporation by testis tubules with analysis by autoradiography, provides the first clear biochemical characteristic that serves unequivocally to distinguish DLS from conventional Golgi apparatus.Work supported in part by a grant from the National Institutes of Health HD 11508  相似文献   

7.
To delineate the traffic route through the Golgi apparatus followed by newly synthesized lysosomal enzymes, we subfractionated the Golgi apparatus of rat liver by preparative free-flow electrophoresis into cisternae fractions of increasing content of trans face markers and decreasing contents of markers for the cis face. NADPase was used to mark median cisternae. Beta-Hexosaminidase, the high mannose oligosaccharide processing enzyme, alpha-mannosidase II, the two enzymes involved in the biosynthesis of the phosphomannosyl recognition marker, and the phosphomannosyl receptor itself decreased in specific activity or amount from cis to trans. Additionally, these activities were observed in a fraction consisting predominantly of cisternae, vesicles and tubules derived from trans-most Golgi apparatus elements. These results, along with preliminary pulse-labeling kinetic data for the phosphomannosyl receptor, suggest that lysosomal enzymes enter the Golgi apparatus at the cis face, are phosphorylated, and appear in trans face vesicles by a route whereby the phosphomannosyl receptor bypasses at least some median and/or trans Golgi apparatus cisternae.  相似文献   

8.
The generation of enzymes located in lysosomes, in cytosol or in endoplasmatic reticulum/Golgi complex is studied in heterokaryons in which chick erythrocyte nuclei are reactivated. The lysosomal enzymes, alpha-glucosidase (alpha-glu) and beta-galactosidase (beta-gal), are synthesized in heterokaryons obtained after fusion of chick erythrocytes with human fibroblasts of patients with Pompe's disease (alpha-glu-deficient) and GM1-gangliosidosis (beta-gal-deficient), respectively. The enzymes appear to be of chick origin and their activities can be detected at first around 4 days after fusion, i.e., at a time when the nucleoli in the erythrocyte nuclei have been reactivated. Maximal activities are reached around 15 days after fusion. No generation of the lysosomal enzyme beta-hexosaminidase is detected in the heterokaryons up to 23 days after fusion of chick erythrocyte with either beta-hexosaminidase A- and B-deficient fibroblasts (Sandhoff's disease) or beta-hexosaminidase A-deficient fibroblasts (Tay-Sachs disease). Similarly no expression of the cytosol enzyme glucose-6-phosphate dehydrogenase (G6PD) is fond up to 30 days after fusion, when chick erythrocytes are fused with fibroblasts from two different G6PD-deficient cell strains (residual activities of 4 and 20% respectively). Indirectly we examined N-acetyl-glucosamine-1-phosphate transferase activity, an enzyme located in the endoplasmic reticulum/Golgi region. This enzyme is needed for the phosphorylation of the lysosomal hydrolases and absence of its activity is the cause of the multiple lysosomal enzyme deficiencies in patients with I-cell disease. The retention of both, chick and human beta-galactosidase in the experiments in which I-cell fibroblasts were fused with chick erythrocytes indicates a reactivation of the gene coding for this phosphorylating enzyme. It also implies that this step in the processing of human lysosomal enzymes is not species-specific.  相似文献   

9.
The role of the Golgi apparatus and the Golgi-endoplasmic reticulum-lysosome complex (GERL) in the genesis of lysosomes was examined in differentiating and degenerating motor neurons of anuran larvae. Acid phosphatase, aryl sulfatase, and thiolacetic acid esterase were utilized as marker enzymes for the lysosomal system, while nucleoside diphosphatase and thiamine pyrophosphatase labeled the inner saccule(s) of the Golgi apparatus. Reduced osmium tetroxide was routinely deposited in the outer Golgi saccule regardless of the state of neuronal maturation. In all young neurons, the disposition of acid hydrolase reaction product paralleled the formation of GERL, with no lytic activity in the Golgi apparatus per se. Hypertrophy of the Golgi apparatus and GERL was observed in the early phases of degeneration, and both organelles apparently exhibit extensive hydrolytic activity. Dense bodies, autophagic vacuoles, and primary lysosomes were found arising from GERL, while the Golgi apparatus may produce primary lysosomal granules during regression. On the other hand, in differentiating neurons, hydrolytic activity was restricted to GERL and an occasional dense body and autophagic vacuole. These studies illustrate a parallelism between the development of GERL and genesis of primary and secondary lysosomes during neuronal cytodifferentiation, and implicate GERL and possibly the Golgi apparatus in lysosomal packaging in degenerating neurons.  相似文献   

10.
GRASP55 regulates Golgi ribbon formation   总被引:3,自引:1,他引:2  
Recent work indicates that mitogen-activated protein kinase kinase (MEK)1 signaling at the G2/M cell cycle transition unlinks the contiguous mammalian Golgi apparatus and that this regulates cell cycle progression. Here, we sought to determine the role in this pathway of Golgi reassembly protein (GRASP)55, a Golgi-localized target of MEK/extracellular signal-regulated kinase (ERK) phosphorylation at mitosis. In support of the hypothesis that GRASP55 is inhibited in late G2 phase, causing unlinking of the Golgi ribbon, we found that HeLa cells depleted of GRASP55 show a fragmented Golgi similar to control cells arrested in G2 phase. In the absence of GRASP55, Golgi stack length is shortened but Golgi stacking, compartmentalization, and transport seem normal. Absence of GRASP55 was also sufficient to suppress the requirement for MEK1 in the G2/M transition, a requirement that we previously found depends on an intact Golgi ribbon. Furthermore, mimicking mitotic phosphorylation of GRASP55 by using aspartic acid substitutions is sufficient to unlink the Golgi apparatus in a gene replacement assay. Our results implicate MEK1/ERK regulation of GRASP55-mediated Golgi linking as a control point in cell cycle progression.  相似文献   

11.
Proteolytic processing of precursor proteins is a phylogenetically ancient and widely used mechanism for producing biologically active peptides. Proteolytic cleavage of proproteins begins only after transport to the Golgi apparatus has been completed and in most systems may continue for many hours within newly formed secretory vesicles as these are stored in the cytosol or transported along axons to more peripheral sites of release. Paired basic residues are required for efficient proteolysis in most precursors, suggesting that a small number of specialized tryptic proteases exist that have great site selectivity but can process many sites within the same precursor or in different precursors within the same cell, or in different cells or tissues. Cleavage-site choice may be strongly influenced by other factors, such as secondary and tertiary structure, but definitive structural information on precursor proteins is lacking. Modifications such as glycosylation, phosphorylation, and sulfation also are Golgi associated but are not known to influence proteolytic processing patterns. Golgi/granule processing also rarely occurs at sites other than pairs of basic amino acids, including single basic residues ( trypsinlike ), Leu-Ala, Leu-Ser, or Tyr-Ala bonds ( chymotrysinlike ) as well as other specialized nontryptic cleavages, suggesting that mixtures of proteases coexist in the Golgi/granule system. Cathepsin B-like thiol proteases, or their precursors, have been implicated as the major processing endopeptidases in several systems. Carboxypeptidase B-like enzymes also have been identified in secretion granules in several tissues and appear to be metalloenzymes similar in mechanism to the pancreatic carboxypeptidases, but with a lower pH optimum. The role of the Golgi apparatus in sorting newly formed secreted products from lysosomal hydrolases may have permitted the development in evolution of an intimate relationship between certain of the lysosomal degradative enzymes, such as cathepsin B or its precursors, and the Golgi/granule processing systems. The sequestration of the proteolytic products of precursors within secretion granules leads to the coordinate discharge of highly complex mixtures of peptides having related or overlapping biological activities. The cosecretion of nonfunctional peptide " leftovers ," such as the proinsulin C-peptide, can serve as useful markers of secretion or cellular localization, as well as of evolutionary relation ships. Errors in cleavage due to point mutations in precursors have been identified in several systems, leading to the accumulation of incorrectly processed materials in the circulation. These and/or defects (ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

13.
Before a cell enters mitosis, the Golgi apparatus undergoes extensive fragmentation. This is required for the correct partitioning of the Golgi apparatus into daughter cells, and inhibition of this process leads to cell cycle arrest in G2 phase. AMP-activated protein kinase (AMPK) plays critical roles in regulating growth and reprogramming metabolism. Recent studies have suggested that AMPK promotes mitotic progression and Golgi disassembly, and that this seems independent of the cellular energy status. However, the molecular mechanism underlying these events is not well understood. Here, we show that both treatment with compound C and depletion of AMPKα2 (but not AMPKα1) delays the G2/M transition in synchronized HeLa cells, as evidenced by flow cytometry and mitotic index analysis. Furthermore, knockdown of AMPKα2 specifically delays further fragmentation of isolated Golgi stacks. Interestingly, pAMPKαThr172 signals transiently appear in the perinuclear region of late G2/early prophase cells, partially co-localizing with the Golgi matrix protein, GM-130. These Golgi pAMPKαThr172 signals were also specifically abolished by AMPKα2 knockdown, indicating specific spatio-temporal activation of AMPKα2 at Golgi complex during late G2/early prophases. We also found that the specific CaMKKβ inhibitor, STO-609, reduces the pAMPKα Thr172 signals in the perinuclear region of G2 phase cells and delays mitotic Golgi fragmentation. Taken together, these data suggest that AMPKα2 is the major catalytic subunit of AMPKα which regulates Golgi fragmentation and G2/M transition, and that the CaMKKβ activates AMPKα2 during late G2 phase.  相似文献   

14.
Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.  相似文献   

15.
During their transport from the endoplasmic reticulum to lysosomes, newly synthesized acid hydrolases are phosphorylated in the Golgi apparatus to generate a common recognition marker, mannose 6-phosphate (Man 6-P). The phosphorylated acid hydrolases then bind to the Man 6-P receptor and are transported by an unknown route to lysosomes. To learn more about the delivery pathway, we examined the fate of the phosphorylated oligosaccharides synthesized by a Man 6-P receptor-positive line of mouse L-cells. In contrast to the rapid degradation of the recognition marker previously observed in mouse lymphoma cells (Gabel, C. A., D. E. Goldberg, and S. Kornfield. 1982. J. Cell Biol., 95:536-542), the number of high mannose oligosaccharides phosphorylated by the L-cells after a 30-min pulse labeling with [2-3H]mannose increased continuously during a subsequent 4-h chase period to a maximum of 9.3% of the total cell-associated structures. After 19 h of chase the absolute number of phosphorylated oligosaccharides declined, but the loss was accompanied by a general loss of cellular oligosaccharides such that 7.4% of the cell-associated high mannose oligosaccharides remained phosphorylated. The longevity of the Man 6-P recognition marker in the L-cells was verified by analyzing the ability of an individual acid hydrolase, beta-glucuronidase, to serve as a ligand for the Man 6-P receptor. At least 60% of the steady state beta-glucuronidase molecules isolated from the L-cells could undergo receptor-mediated endocytosis into enzyme-deficient human fibroblasts. Dense lysosomal granules isolated by metrizamide gradient centrifugation from [3H]mannose-labeled L-cells were found to be highly enriched in their content of phosphomonoester-containing oligosaccharides. The data indicate that acid hydrolases may retain their Man 6-P recognition markers within lysosomes, and suggest the possibility that dephosphorylation occurs at a nonlysosomal location through which the newly synthesized enzymes pass en route to lysosomes.  相似文献   

16.
Summary The lysosomal system of the two types of synoviocytes (A and S) from the knee joint of normal rat synovial membrane was studied by electron-microscopic acid phosphatase cytochemistry. In random sections of the synovial intima lysosomes were more often encountered in the A-cell profiles than in the S-cell profiles. Characteristically, type-A synoviocytes showed many large and medium-sized lysosomes the cytochemical appearance of which varied considerably. No acid phosphatase activity was detectable in the cisternae of the Golgi apparatus or in the Golgi vesicles. In type-S synoviocytes the lysosomes were smaller, and more uniform in cytochemical appearance. Heavy deposits of acid phosphatase reaction product were constantly demonstrated in cisternae of the Golgi apparatus as well as in smooth-walled Golgi vesicles in type-S cells. The findings that type-A and type-S synoviocytes show distinctly different organization of the lysosomal system indicate that the roles of the lysosomes in these two types of cells may be different.  相似文献   

17.
Rat liver membranes were subjected to centrifugation in a sucrose density gradient in which the Golgi apparatus was separated into several subfractions. Two enzymes involved in the synthesis of the phosphorylated recognition marker in lysosomal enzymes, UDP-N-acetylglucosamine:lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase and alpha-N-acetylglucosaminyl phosphodiesterase fractionated with alpha-1,2-mannosidase, a marker enzyme of cis Golgi membranes and differently from galactosyltransferase, a marker enzyme of trans Golgi membranes.  相似文献   

18.
Golgi apparatus partitioning during cell division   总被引:1,自引:0,他引:1  
This review discusses the mitotic segregation of the Golgi apparatus. The results from classical biochemical and morphological studies have suggested that in mammalian cells this organelle remains distinct during mitosis, although highly fragmented through the formation of mitotic Golgi clusters of small tubules and vesicles. Shedding of free Golgi-derived vesicles would consume Golgi clusters and disperse this organelle throughout the cytoplasm. Vesicles could be partitioned in a stochastic and passive way between the two daughter cells and act as a template for the reassembly of this key organelle. This model has recently been modified by results obtained using GFP- or HRP-tagged Golgi resident enzymes, live cell imaging and electron microscopy. Results obtained with these techniques show that the mitotic Golgi clusters are stable entities throughout mitosis that partition in a microtubule spindle-dependent fashion. Furthermore, a newer model proposes that at the onset of mitosis, the Golgi apparatus completely loses its identity and is reabsorbed into the endoplasmic reticulum. This suggests that the partitioning of the Golgi apparatus is entirely dependent on the partitioning of the endoplasmic reticulum. We critically discuss both models and summarize what is known about the molecular mechanisms underlying the Golgi disassembly and reassembly during and after mitosis. We will also review how the study of the Golgi apparatus during mitosis in other organisms can answer current questions and perhaps reveal novel mechanisms.  相似文献   

19.
Before a cell enters mitosis, the Golgi apparatus undergoes extensive fragmentation. This is required for the correct partitioning of the Golgi apparatus into daughter cells, and inhibition of this process leads to cell cycle arrest in G2 phase. AMP-activated protein kinase (AMPK) plays critical roles in regulating growth and reprogramming metabolism. Recent studies have suggested that AMPK promotes mitotic progression and Golgi disassembly, and that this seems independent of the cellular energy status. However, the molecular mechanism underlying these events is not well understood. Here, we show that both treatment with compound C and depletion of AMPKα2 (but not AMPKα1) delays the G2/M transition in synchronized HeLa cells, as evidenced by flow cytometry and mitotic index analysis. Furthermore, knockdown of AMPKα2 specifically delays further fragmentation of isolated Golgi stacks. Interestingly, pAMPKαThr172 signals transiently appear in the perinuclear region of late G2/early prophase cells, partially co-localizing with the Golgi matrix protein, GM-130. These Golgi pAMPKαThr172 signals were also specifically abolished by AMPKα2 knockdown, indicating specific spatio-temporal activation of AMPKα2 at Golgi complex during late G2/early prophases. We also found that the specific CaMKKβ inhibitor, STO-609, reduces the pAMPKα Thr172 signals in the perinuclear region of G2 phase cells and delays mitotic Golgi fragmentation. Taken together, these data suggest that AMPKα2 is the major catalytic subunit of AMPKα which regulates Golgi fragmentation and G2/M transition, and that the CaMKKβ activates AMPKα2 during late G2 phase.  相似文献   

20.
Summary The cerebral caudodorsal cells (CDC) of the pulmonate snail Lymnaea stagnalis are involved in the control of egg laying and associated behaviour by releasing various peptides. One of these is the ovulation hormone (CDCH). The cellular dynamics of this peptide have been studied using an antiserum raised to a synthetic portion of CDCH comprising the 20–36 amino acid sequence. With the secondary antibody-immunogold technique, specific immunoreactivity was found in all CDC. Rough endoplasmic reticulum and Golgi apparatus showed very little reactivity as did secretory granules that were in the process of being budded off from the Golgi apparatus. However, secretory granules that were being discharged from the Golgi apparatus, were strongly reactive. Secretory granules within lysosomal structures revealed various degrees of immunoreactivity, indicating their graded breakdown. Large electrondense granules, formed by the Golgi apparatus and thought to be involved in intracellular degradation of secretory material, were only slightly reactive. In the axon terminals secretory granules released their contents into the haemolymph by the process of exocytosis. The exteriorized contents were in most cases clearly immunopositive.The possibility has been discussed that CDCH is cleaved from its polypeptide precursor within secretory granules during granule discharge from the Golgi apparatus; subsequently, the mature secretory granules would be transported towards the neurohaemal axon terminals where they release CDCH into the haemolymph. Superfluous secretory material would be degraded by the lysosomal system including the large electron-dense granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号