首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Zn(II) in transcription by T7 RNA polymerase   总被引:4,自引:0,他引:4  
Homogeneous T7 RNA polymerase contains from 2–4 gm atoms of zinc per mole of M.W. 107,000. Inactivated molecules which can be separated from the active molecules by repeated chromatography contain less zinc, from 0.4 to 1 gm at per mole. Instability of the enzyme makes it difficult to relate maximal activity to a specific stoichiometry of Zn. The enzyme is inhibited by 1,10-phenanthroline, EDTA, CN?, SH?, N3? and by incubation with Chelex resin. Zinc is retained on gel filtration, but can be removed by dialysis for 96 hr against 5 mM 1,10-phenanthroline which totally inactivates the enzyme. Catalytic activity requires the presence of thiol reagents. Preparations with low activity can be activated by exogenous Zn ions.  相似文献   

2.
Purified DNA-dependent RNA polymerases A, B and C isolated from calf thymus contain a significant amount of zinc. Atomic absorption spectroscopy revealed the presence of 6.7, 5.35 and 2.6–4.1 g-atoms of zinc per mole of polymerase A, B and C, respectively. These enzymes are inhibited by treatment with 1,10-phenanthroline at concentrations varying from 10-5 to 10-4 M. However, the addition of zinc ions does not restore fully the activity of 1,10-phenanthroline treated enzymes. Exogenous zinc ions reducein vitro an overall RNA synthesis catalysed by RNA polymerases from calf thymus. In addition to the sites which bind zinc in a specific and stoichiometric way these enzymes possess other classes of binding sites with high and low affinity. Occupancy by exogenous zinc of these additional binding sites inhibits polymerase activity.  相似文献   

3.
4.
An intestinal zinc-binding protein, induced by parenteral zinc administration, has been isolated and characterized. Based upon its elution behavior in two chromatographic systems, Zn2+/protein ratio of 5.0–5.6 gram atoms/mole, a Zn2+/SH ratio of about 3.0, paucity of both aromatic amino acids and absorbance at 280 nm, abundance of cysteic acid residues (28–31%), and low molecular weight (6,000–7,000 daltons), the protein meets the criteria for classification as a metallothionein and is more properly named zinc-thionein. Orally administered 65Zn was found to bind to intestinal zinc-thionein and thus this intracellular protein may function as a component of the mechanism responsible for mammalian zinc homeostasis at the level of intestinal absorption.  相似文献   

5.
Streptomyces naraensis was inoculated into 100 ml of culture broth, containing 50 µCi of 65Zn, diluted with ZnCl2 solution to make 10-4 m Zn2+ ion, at 27°C for 5 days with shaking. 65Zn-labeled neutral proteinase from Streptomyces naraensis was prepared by the method described previously. The preparation was homogeneous by disc electrophoresis and contained 1 g-atom of zinc per mole of enzyme in calculation by radioactivity.

It was suggested that the protein-bound zinc of neutral proteinase was not essential for enzymatic activity. Thus, this zinc was an essential component for the higher order structure of the protein, and the removal of zinc treated with EDTA* inactivated the enzyme. The enzymatic activity was maintained in the presence of calcium ion.  相似文献   

6.
F K Ghishan  H L Greene 《Life sciences》1983,32(15):1735-1741
Zinc has been implicated to play a role in the pathogenesis and management of diabetes. Since the intestinal transport of several minerals as calcium, magnesium and strontium was found to be altered in the diabetic rats, we postulated that intestinal zinc transport may be also altered in the diabetic rat. Therefore, using invivo single pass perfusion technique we determined lumen to mucosa flux, net absorption and the mucosa to lumen flux of zinc in the small and large intestinal segments of diabetic rats, diabetic rats treated with insulin and in control rats. Tissue distribution of transported 65Zn into various organs and tissue concentrations of native zinc in the groups of rats studied were determined. Our results indicate that lumen to mucosa flux (μmole/h/g wet weight) was decreased in all intestinal segments of the diabetic rats compared to controls. However, the total capacity (mμmole/h/cm length) was similar. The specific activity and total capacity of net absorption of zinc was similar in all intestinal segments of the rats studied. The reverse mucosa to lumen flux was significantly decreased in all segments of diabetic rats compared to corresponding values in control rats. Tissue distribution of 65Zn following the perfusion study showed increased retention of 65Zn in the liver, kidney and femurs of the diabetic rats compared to controls. Serum and tissue concentration of native zinc in various organs were similar in all groups of rats studied. The mechanism(s) responsible for these findings are discussed.  相似文献   

7.
Some experiments were carried out with purified neutral proteinases I and II of Aspergillus sojae in relation to their characteristics as metalloenzyme.

The both enzymes contained one gram atom of zinc and about two gram atoms of calcium per mole (molecular weights of 41,700 for I and 19,800 for II were estimated by gel filtration) of enzyme protein, and the zinc was essential for the activity. Some metal-chelating agents, such as ethylenediaminetetraacetic acid (EDTA), o-phenanthroline, 8-hydroxyquinoline and α,α′-dipyridyl, inhibited the activity of the both enzymes. In the inactivation of neutral proteinase II by EDTA a distinct pH-dependency was observed. The EDTA-inactivated enzymes were reactivated fully or partially by the addition of some metal ions such as Zn2+, Co2+, Mn2+, Cu2+ (only neutral proteinase II) and Ni2+. Zinc-free apo-enzymes were prepared from the native enzymes by the dialysis against EDTA solution. The apo-enzyme of neutral proteinase I still contained calcium, while that of neutral proteinase II did not. The apo-enzymes restored their activity for the most part either by the addition of excess amount of zinc or by mixing with a stoichiometric amount of zinc in the presence of calcium at an alkaline condition.  相似文献   

8.
35Cl? quadrupole relaxation was measured in the presence of metal-free alkaline phosphatase and in the presence of Zn2+-alkaline phosphatase. The relaxation data show that for an enzyme containing the minimum amount of zinc needed for full activity—2 g atoms of zinc per mole of protein—there appears to be no binding of halide ions to the protein-bound zinc ions. In contrast, when there is a high metal-enzyme ratio, a large relaxation enhancement is observed, demonstrating coordination of halide ions to the metal ions.Addition of inorganic phosphate causes no change in the 35Cl? relaxation in the presence of metal-free enzyme. However, marked decreases in relaxation are observed upon addition of phosphate to the Zn2+-alkaline phosphatase. The relaxation measurements carried out in the presence of phosphate show that substrate binding does prove to be metal-ion dependent. Furthermore, experiments with inorganic phosphate suggest the tight binding of one phosphate to the alkaline phosphatase.  相似文献   

9.
The alkaline phosphatase (EC 3.1.3.1.) from Rhizobium leguminosarum WU235 has been purified. The enzyme is a non-specific phosphomonoesterase, has a molecular weight of 78,500 and a sub-unit molecular weight of 39,400. Magnesium and zinc ions are implicated in the structure of the enzyme; atomic absorption analysis gave 1.9 g-atoms Mg2+ and 1.9–5.1 g-atoms Zn2+ per mole of enzyme. In addition high concentrations of Mg2+ markedly stimulate the enzyme. The phosphatase is inhibited by Li+ and Na+ and stimulated by K+, Rb+ and Cs+, which suggests that the enzyme is K+ activated.  相似文献   

10.
Yeast alcohol dehydrogenase, purified from baker's yeast under conditions which exclude contamination by extraneous metal ions, is homogeneous by analytical ultracentrifugation and disc gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme has a molecular weight of 149,000 as determined by ultracentrifugation time-lapse photography and exhibits specific activities of 430 to 480 U/mg. Zinc analysis by three independent, highly sensitive methods, i.e., atomic absorption spectrometry, atomic fluorescence spectrometry, and microwave-induced plasma emission spectrometry, demonstrates 4 g-atom of catalytically essential Zn per mole of enzyme. No other metal atoms are present in stoichiometrically significant quantities as assessed by emission spectrography. The Stoichiometry of coenzyme binding, 4 mol of NADH/mol of enzyme, is identical to that of zinc, consistent with one coenzyme binding site and one zinc atom per enzyme subunit. Conditions for exchange of the four catalytically essential zinc atoms with 65Zn have been developed. These atoms exchange identically under all conditions examined. The resultant radiolabeled enzyme, l(YADH)65Zn4], has the same metal content, specific enzymatic activity, and coenzyme binding properties as the native enzyme. The 65Zn of this enzyme serves to monitor the extent and site specificity of cobalt replacement. The fully cobalt-substituted enzyme, [(YADH)Co4], has a specific activity of 80 U/mg, 17% that of the Zn enzyme, and exhibits absorption and circular dichroic spectra which are consistent with coordination by one or more sulfur ligands in a distorted tetrahedral geometry.  相似文献   

11.
The activated form of the U-47 mutant of E. coli alkaline phosphatase is a dimer with 4g atoms of zinc per mole. Its specific activity is only two-tenths that of the wild type enzyme. Analysis of the catalytic action by transient kinetics and quenching experiments shows that only one site per dimer (half-site reactivity) can be phosphorylated by substrates and 32Pi at acidic pH and by substrates at alkaline pH. The rate constants of the phosphorylation (k2) and of the dephosphorylation (k3) of the active site are drastically changed by the mutation. The pH dependence of k2 and k3 is reported.  相似文献   

12.
Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) are widely used anthropogenic chelating agents for control of metal speciation and are ubiquitous in natural waters and wastewaters. This is the first report of systematic measurement of the growth yields of a mixed culture (BNC1-BNC2) on EDTA and its biodegradation intermediates, and of Aminobacter aminovorans (aka Chelatobacter heintzii) ATCC 29600 on NTA and its biodegradation intermediates. The yields measured for BNC1-BNC2 co-culture were 75.0 g of cell dry weight (CDW) (mole of EDTA)−1, 68.6 g of CDW (mole of ED3 A)−1, 51.2 g of CDW (mole of N,N′-EDDA)−1, 34.5 g of CDW (mole of ED)−1, 26.3 g of CDW (mole of IDA)−1, 12.2 g of CDW (mole of glycine)−1, and 9.7 g of CDW (mole of glyoxylate)−1. The yields measured for A. aminovorans were 44.3 g of CDW (mole of NTA)−1, 37.9 g of CDW (mole of IDA)−1, 15.2 g of CDW (mole of glycine)−1, and 10.4 g of CDW (mole of glyoxylate)−1. The biodegradation pathways of EDTA, NTA, and several of their metabolic intermediates include reactions catalyzed by oxygenase enzymes, which may reduce energy available for cell synthesis. Comparison of measured yields with predicted yields indicates that the effect of oxygenase reaction on cell yield can be quantified experimentally as well as modeled based on thermodynamics.  相似文献   

13.

Background

Age-related macular degeneration (AMD) is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet.

Methodology/Principal Findings

Adult Long Evans (LE) rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE) were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX) microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE). The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm) found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch''s membrane of ZD-LE rats varied between 0.4–3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch''s membrane or even inside it.

Conclusions/Significance

In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch''s membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch''s membrane.  相似文献   

14.
Active site substituted Cd(II) horse liver alcohol dehydrogenase has been studied by Perturbed Angular Correlation of Gamma rays Spectroscopy during turnover conditions for benzaldehyde and 4-trans-(N,N-dimethylamino)cinnamaldehyde. The ternary complex between alcohol dehydrogenase NAD+ and Cl, and the binary complex between alcohol dehydrogenase and orthophenanthroline have also been studied. The Nuclear Quadrupole Interaction parameters have been interpreted in terms of different coordination geometries for Cd(II) in the catalytic zinc site of the enzyme. Calculation of the nuclear quadrupole interaction for cadmium in the catalytic site of the enzyme with and without coenzyme, based upon the four coordinated geometries determined from X-ray diffraction, agrees with the experimentally determined values. The ternary complexes between enzyme, NAD+ and either Cl or trifluoroethanol and the binary complex between enzyme and orthophenanthroline have almost identical spectral parameters which are not consistent with a four coordinated geometry, but are consistent with a five coordinated geometry. The nonprotein ligands for the ternary complex with trifluoroethanol are suggested to be an alkoxide group and a water molecule. The Nuclear Quadrupole Interaction parameters for the productive ternary complex between enzyme, NADH and an aldehyde is consistent with the four coordinated geometry predicted from X-ray diffraction data having the carbonyl group of the aldehyde substituting the water molecule as ligand to the metal.Abbreviations LADH Horse liver alcohol dehydrogenase - H4Zn2LADH derivative of LADH free of zinc in the catalytic site - 111CdZn2LADH derivative of LADH with 111Cd (carrier free) in the catalytic site - Cd2Zn2LADH derivative of LDH with 2 mole of Cd(II) per mole LADH in the catalytic site - PAC pertubed angular correlation of gamma rays - NQI Nuclear quadrupole interaction - AOM Angular overlap model - trifluoroethanol 2,2,2-trifluoroethanol - DACA trans-4-(N,N-dimethylamino)cinnamaldehyde - NAD+ and NADH oxidized and reduced nicotinamide adenine dinucleotide - NADH2 reduced 1,4,5,6-tetrahydronicotinamide adenine dinucleotide The experimental work was carried out at the Niels Bohr Institute Risø, 4000 Roskilde and Blegdamsvej 19, 2100 Copenhagen, Denmark Offprint requests to: R. Bauer  相似文献   

15.
Analyses for zinc in high specific activity preparations of yeast alcohol dehydrogenase (YADH) indicate a metal content of 1.8–1.9 moles of zinc per mole of enzyme subunit. This zinc content is observed for YADH prepared from Bakers yeast by recrystallization from Am2SO4 containing 1 mM EDTA, followed by chromatography on DE-52 and Sephadex-G-200. YADH obtained from Boehringer-Mannheim is characterized by a variable specific activity: preparations with Sp. Ac. = 380–400 U/mg contain 1.8–1.9 moles of zinc per mole of subunit. Dialysis of YADH against EDTA (pH 8.5, 25°, under N2) reduces the specific activity and zinc content in an approximately linear fashion down to a Sp. Ac. = 150 U/mg, consistent with the preferential loss of a single, weakly bound zinc per subunit which is essential for catalytic activity. Dialysis of YADH against 1 mM ZnCl2 (pH 6.5–8.5, 25°, under N2) does not lead to an increase in the zinc content of the enzyme, indicating that under these conditions zinc does not bind adventitiously to YADH. Dialysis against 50 mM CoSO4 (pH 5.5, 25°, under N2, 60–90 hr) leads to an exchange of ≈ 40% of the enzyme-bound zinc by cobalt. Our preparations of YADH are consistently characterized by a zinc content of ≈ 2 per subunit and we are unable to reduce the zinc content of YADH by dialysis against EDTA without a concomitant loss in enzyme activity, in contrast to reports of one zinc per subunit [Veillon, C. and Sytkowski, A.J., BBRC 67: 1499 (1975); Vallee, B.L. and Hoch, F.L., Proc. Nat. Acad. Sci. USA 41: 327 (1955)]. The findings reported here, together with the observed structural similarities between YADH and horse liver alcohol dehydrogenase [Jornvall, H., Woenckhaus, C. and Johnscher, G., Eur. J. Biochem. 53: 71 (1975)], suggest a role for zinc at both a structural and catalytic site in YADH.  相似文献   

16.
Summary A cell-free system from a Pseudomonas sp., strain PM3, catalysed the oxidative demethylation, hydroxylation and subsequent ring cleavage of p-methoxybenzoate. Demethylation, to yield p-hydroxybenzoate, involved absorption of 1.0 mole of oxygen/mole of p-methoxybenzoate, and required reduced pyridine nucleotide (either NADH or NADPH) as cofactor. p-Hydroxybenzoate was hydroxylated to yield protocatechuate with the absorption of 1 mole of oxygen/mole of substrate, and required NADPH as cofactor. Protocatechuate was oxidized, with absorption of 1 mole of oxygen/mole of substrate, to 3-oxoadipate. The methyl group of p-methoxybenzoate was removed as formaldehyde, and oxidized to formate and carbon dioxide by formaldehyde dehydrogenase, which required GSH and NAD+, and formate dehydrogenase, which required NAD+.  相似文献   

17.
Certain divalent cations can inhibit yeast enolase by binding at sites that are distinct from those metal binding sites normally associated with catalytic activity, i.e., the conformational and catalytic binding sites. By using a buffer that does not compete with metal ions (tetrapropylammonium borate) Zn, Co, Mn, Cu, Cd, and Ni are found to exhibit similar inhibitory characteristics. Inhibition by those metals is alleviated by the addition of imidazole or tris buffer and, for zinc, by a metal chelating agent (Calcein). Inhibition by zinc was examined in detail through binding studies and enzymatic activity measurement. In tetrapropylammonium buffers at pH 8.0, enolase binds up to four moles of zinc per mole of enzyme (two moles per subunit). An imidazole concentration of 0.05 M reduces the binding: in the absence of substrate, just two moles of zinc per enzyme are bound. The enzyme will bind two additional moles of zinc upon the addition of substrate in either buffer, but the enzyme in tetrapropylammonium buffer is nearly inactive. Inhibition is, therefore, correlated with the binding of two moles of zinc per mole of enzyme. Some additional metal ions, Ca, Tb, Hg, and Ag also caused inhibition of yeast enolase but not by binding to the inhibitory site described.  相似文献   

18.
19.
The fluorescent analog of adenosine triphosphate (ATP)1 1,N6-ethenoadenosine triphosphate, (εATP), has been utilized as a substitute for ATP in the myosin and heavy meromyosin ATPase systems. For myosin, the analog εATP replaced ATP with a somewhat larger Km (2.6 × 10?4 mole ??1 for εATP as opposed to 8.8 × 10?5 mole ??1 for ATP), indicating that the apparent affinity of the enzyme for εATP is less than for ATP. Perhaps of more interest, further comparison yielded a Vmax for εATP about two and one half times the value for ATP (20 μmole PO4 sec?1 g protein?1 as opposed to 8.1 μmole sec?1 g protein?1). Results for the HMM-εATPase system were similar, yielding a Km value of 1.47 × 10?4 mole ??1 and a Vmax of 54.2 μmole PO4 sec?1 g protein?1, as opposed to corresponding Km and Vmax values of 1.23 × 10?4 mole ??1 and 20.4 μmole PO4 sec?1 g protein?1, respectively for the HMM-ATP interaction. The pH dependence of εATPase for both systems was comparable to ATP, suggesting a similarity in the mechanism of hydrolysis of the two nucleotides. Activation of εATPase by Ca2+ in the presence of 0.5 M KCl was comparable to ATPase for both systems, but inhibition by Mg2+ seemed to be more effective for εATPase. These results indicate that εATP is an excellent substitute for ATP in the myosin and heavy meromyosin systems and because of its insertion into the active site of these muscle proteins, it promises to be a very useful probe for conformation studies at this level.  相似文献   

20.
The 42 amino acid Alzheimer's Abeta peptide has been produced in E. coli as a soluble fusion to maltose binding protein (MBP). Affinity purification on amylose columns of MBP-Abeta and MBP led to the recovery of proteins at purities that were suited for physicochemical analyses. MBP-Abeta was able to bind approximately 2 mole equivalents of copper or 4 mole equivalents of zinc, while MBP alone bound negligible amounts of zinc or copper. We conclude that Abeta can bind 2 copper or 4 zinc ions in its fusion format. Because MBP-Abeta is a convenient protein to work with, this system is well suited for further studies on the structure of Abeta and its interactions with metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号