首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rat aortic smooth muscle cells, vasopressin (AVP) induces prostacyclin (PGI2) production, probably as the consequence of phospholipase C activation. Our study analyzes the effects of phorbol 12-myristate 13-acetate (PMA)-induced protein kinase C (PKC) activation on AVP-induced inositol 1,4,5-trisphosphate formation, cytosolic free Ca2+ concentration [( Ca2+]c), and PGI2 production. PMA rapidly decreased PKC activity in the cytosol of smooth muscle cells, while increasing it transiently in the membranes with a maximum around 20 min. Prior exposure of the cells to PMA resulted in a transient inhibition of both AVP-induced inositol 1,4,5-trisphosphate formation and [Ca2+]c rise. This was inversely correlated with membraneous PKC activity and partially reversed by the PKC inhibitor staurosporine. In contrast, pretreating the cells with PMA markedly potentiated A23187 or AVP-induced PGI2 production. Under those conditions, AVP-induced PGI2 production did not correlate either with PMA-induced membranous PKC activity or with AVP-induced PLC activation. However, this potentiating effect of PMA was reversed by staurosporine and was not mimicked by the 4 alpha-phorbol, an inactive analogue of PMA. Thus, the possibility is raised that, while inhibiting AVP-induced PLC activation, PMA-induced PKC activation increases the Ca2+ sensitivity of the cellular signaling system leading to PGI2 production.  相似文献   

2.
Arginine vasopressin (AVP)-induced formation of inositol phosphates and increased calcium efflux in smooth muscle cells (A-10) were inhibited by short term treatment with phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (Ca2+/phospholipid-dependent protein kinase) (Aiyar, N., Nambi, P., Whitman, M., Stassen, F. L., and Crooke, S. T. (1987) Mol. Pharmacol. 31, 180-184). Here we report that prolonged treatment of A-10 cells (48 h) with PDBu markedly enhanced AVP-induced calcium mobilization but inhibited ATP- and thrombin-induced calcium mobilization. PDBu (400 nM) doubled [Ca2+]i induced with 3 nM AVP, while the basal calcium concentrations before and after AVP were not different from those of untreated cells. The EC50 for a 24-h exposure was 2.3 nM PDBu. Phorbol 12-myristate 13-acetate was also effective, while 4-alpha-phorbol 12,13-didecanoate (48 h at 400 nM) was without effect. 4-alpha-phorbol 12,13-didecanoate also did not affect inositol phosphate formation. PDBu markedly enhanced inositol phosphate formation induced by AVP but not by NaF. PDBu did not affect basal inositol phosphate and polyphosphoinositide levels, and cytosolic and membrane-associated phospholipase C activity. PDBu treatment (48 h, 400 nM) decreased membrane-associated and cytosolic protein kinase C activity by 80 and 90%, respectively. However, the dose response and time course of changes in protein kinase C activity did not correlate with the same curves for PDBu enhancement of AVP-induced calcium mobilization. We conclude that prolonged PDBu treatment selectively enhanced AVP-induced calcium mobilization and polyphosphoinositide hydrolysis. These effects were not caused by an increase in vasopressin receptor number and apparent affinity, an increase in phospholipase C activity, G-protein-phospholipase C coupling, formation of polyphosphoinositide, or inhibition of inositol phosphate metabolizing enzymes. Enhancement of the AVP responses did not correlate with desensitization or activation of protein kinase C. We suggest that prolonged PDBu treatment might sensitize a putative V1 receptor-G-protein-phospholipase C complex.  相似文献   

3.
In order to clarify the mechanism(s) by which cyclic GMP inhibits the generation of inositol phosphates in rat aorta segments and cultured bovine aortic smooth muscle cells, we studied phosphoinositide hydrolysis and GTPase activity in homogenates and membrane preparations of cultured bovine aortic smooth muscle cells. Pretreatment of homogenate preparations with cyclic GMP plus ATP did not inhibit [8-arginine, 3H] vasopressin (AVP) binding, but resulted in a total suppression of the AVP-induced GTPase activation. The pretreatment with cyclic GMP and ATP also inhibited the formation of inositol phosphates induced by AVP in the presence of low concentrations of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S), or by high concentrations of GTP gamma S alone. However, the formation of inositol phosphates by high concentrations of Ca2+ alone was not blocked. These results suggest that the ability of cyclic GMP to inhibit phosphoinositide hydrolysis results from an inhibition of a guanine nucleotide regulatory protein activation, and the interaction between guanine nucleotide regulatory protein and phospholipase C. While the precise site of this inhibition is not presently known, the inhibition by cyclic GMP is dependent upon the addition of ATP and probably entails a phosphorylation event since adenylylimidodiphosphate can not substitute for the ATP requirement.  相似文献   

4.
Fluoride elicited in liver macrophages a release of arachidonic acid and prostaglandins but not formation of inositol phosphates or superoxide. The effects of fluoride required extracellular calcium and were inhibited by staurosporine and by phorbol ester treatment of the cells. Furthermore, fluoride led to a translocation of protein kinase C from the cytosol to membranes. This indicates that the calcium-dependent protein kinase C is involved in the action of fluoride. Cholera toxin decreased the zymosan-induced release of arachidonic acid and prostaglandins but not of inositol phosphates or superoxide. Pertussis toxin ADP-ribosylated a 41,000 molecular weight membrane protein; enhanced specifically the zymosan-induced formation of prostaglandin(PG)E2 but did not affect the zymosan-induced release of arachidonic acid, PGD2, inositol phosphates or superoxide. These data suggest that activation of phospholipase (PL)A2, phosphoinositide (PI)-specific PLC and NADPH oxidase in liver macrophages is most probably not mediated by activation of guanine nucleotide binding (G)-proteins coupled directly to these enzymes.  相似文献   

5.
Current scientific literature generally attributes the vasoconstrictor effects of [Arg(8)]vasopressin (AVP) to the activation of phospholipase C (PLC) and consequent release of Ca(2+) from the sarcoplasmic reticulum. However, half-maximal activation of PLC requires nanomolar concentrations of AVP, whereas vasoconstriction occurs when circulating concentrations of AVP are orders of magnitude lower. Using cultured vascular smooth muscle cells, we previously identified a novel Ca(2+) signaling pathway activated by 10-100 pM AVP. This pathway is distinguished from the PLC pathway by its dependence on protein kinase C (PKC) and L-type voltage-sensitive Ca(2+) channels (VSCC). In the present study, we used isolated, pressurized rat mesenteric arteries to examine the contributions of these different Ca(2+) signaling mechanisms to AVP-induced vasoconstriction. AVP (10(-14)-10(-6) M) induced a concentration-dependent constriction of arteries that was reversible with a V(1a) vasopressin receptor antagonist. Half-maximal vasoconstriction at 30 pM AVP was prevented by blockade of VSCC with verapamil (10 microM) or by PKC inhibition with calphostin-C (250 nM) or Ro-31-8220 (1 microM). In contrast, acute vasoconstriction induced by 10 nM AVP (maximal) was insensitive to blockade of VSCC or PKC inhibition. However, after 30 min, the remaining vasoconstriction induced by 10 nM AVP was partially dependent on PKC activation and almost fully dependent on VSCC. These results suggest that different Ca(2+) signaling mechanisms contribute to AVP-induced vasoconstriction over different ranges of AVP concentration. Vasoconstrictor actions of AVP, at concentrations of AVP found within the systemic circulation, utilize a Ca(2+) signaling pathway that is dependent on PKC activation and can be inhibited by Ca(2+) channel blockers.  相似文献   

6.
Adenohypophysial cells from female Wistar rats were dispersed and maintained for 4 days in primary culture in the presence of [3H]myoinositol. The effects of several releasing hormones, corticotropin-releasing factor (CRF), arginine vasopressin (AVP), angiotensin II (A II), thyrotropin-releasing hormone (TRH), and luteinizing hormone-releasing hormone (LHRH) on the liberation of labelled inositol phosphate (InsP), inositol-bisphosphate (InsP2), and inositol-trisphosphate (InsP3) from prelabelled inositol lipids were tested alone and in combination. Of the corticotropin (ACTH) secretagogues tested, AVP and A II produced a dose-dependent increase in inositol phosphate accumulation. CRF was inactive. The ED50 values of about 1 nM for both AVP and A II were close to the corresponding dissociation constants for binding to pituitary membranes: and, in the case of A II, close to the ED50 for A II-induced inhibition of pituitary membrane adenylate cyclase. The responses to A II and AVP could be inhibited by [Sar1,Ile8]A II and the AVP antagonist d(Et2)-VAVP, respectively. The magnitude of the maximal effect of AVP on accumulation of inositol phosphates was small (25% increase over basal value) suggesting that this effect was restricted to a minor subpopulation of pituitary cells (probably corticotrophes). CRF did not potentiate AVP-induced inositol phosphates accumulation. Maximal A II-induced increase in inositol phosphates accumulation represented 150% of the basal value and was partially additive with that of TRH suggesting that lactotrophes represent the main A II-sensitive subpopulation.  相似文献   

7.
We previously reported that sphingosine 1-phosphate (S-1-P), a sphingomyelin metabolite, activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in aortic smooth-muscle A10 cells. In the present study, we investigated the effect of sphingomyelin metabolites on phospholipase C-catalyzing phosphoinositide hydrolysis induced by arginine vasopressin (AVP) in A10 cells. C(2)-ceramide and sphingosine had little effect on inositol phosphate (IP) formation stimulated by AVP. S-1-P, which alone slightly stimulated the IPs formation, dose-dependently amplified the AVP-induced formation of IPs. Tumor necrosis factor-alpha enhanced the AVP-induced formation of IPs. However, S-1-P did not enhance the formation of IPs by NaF, a heterotrimeric GTP-binding protein activator. Pertussis toxin inhibited the effect of S-1-P. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, had little effect on the enhancement by S-1-P. SB203580, an inhibitor of p38 MAP kinase, suppressed the effect of S-1-P on the formation of IPs by AVP. SB203580 inhibited the AVP-induced phosphorylation of p38 MAP kinase. Pertussis toxin suppressed the phosphorylation of p38 MAP kinase by S-1-P. These results indicate that S-1-P amplifies AVP-induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in vascular smooth-muscle cells.  相似文献   

8.
Fluoride elicited in liver macrophages a release of arachidonic acid and prostaglandins but not formation of inositol phosphates or superoxide. The effects of fluoride required extracellular calcium and were inhibited by staurosporine and by phorbol ester treatment of the cells. Furthermore, fluoride led to a translocation of protein kinase C from the cytosol to membranes. This indicates that the calcium-dependent protein kinase C is involved in the action of fluoride. Cholera toxin decreased the zymosan-induced release of arachidonic acid and prostaglandins but not of inositol phosphates or superoxide. Pertussis toxin ADP-ribosylated a 41,000 molecular weight membrane protein; enhanced specifically the zymosan-induced formation of prostaglandin(PG)E2 but did not affect the zymosan-induced release of arachidonic acid, PGD2, inositol phosphates or superoxide. These data suggest that activation of phospholipase (PL)A2, phosphoinositide (PI)-specific PLC and NADPH oxidase in liver macrophages is most probably not mediated by activation of guanine nucleotide binding (G)-proteins coupled directly to these enzymes.  相似文献   

9.
Signal generation during the stimulation of insulin secretion by arginine vasopressin (AVP) was investigated in RINm5F cells. AVP (0.1 microM) caused a biphasic cytosolic Ca2+ ([Ca2+]i) rise, namely a rapid transient marked elevation after stimulation followed by a series of oscillations. In the absence of extracellular Ca2+, the sustained oscillations were abolished, while the initial [Ca2+]i transient was only partly decreased, indicating that the former are due to Ca2+ influx and the latter due mainly to mobilization from internal Ca2+ stores. AVP also evoked a transient depolarization of the average membrane potential. AVP-induced Ca2+ influx during the sustained phase, which was strictly dependent on receptor occupancy, was attenuated by membrane hyperpolarization with diazoxide. However, blockade of Ca2+ channels of the L- or T-type was ineffective. AVP stimulated production of diacylglycerol and inositol phosphates; for the latter both [3H] inositol labeling and mass determinations were performed. A transient increase in Ins(1,4,5)P3 was followed by a marked enhancement of Ins(1,3,4,5)P4 (8-fold) peaking at 15 s and gradually returning to basal values. Ins(1,3,4,6)P4 and Ins(3,4,5,6)P4 exhibited the most long-lasting augmentation (4- and 1.7-fold, respectively), and therefore correlated best with the period of sustained [Ca2+]i oscillations. InsP5 and InsP6 were not elevated. The effects of AVP, including the stimulation of insulin secretion from perifused cells, were obliterated by a V1 receptor antagonist. In conclusion, AVP induces protracted [Ca2+]i elevation in RINm5F cells which is associated with long-lasting increases in InsP4 isomers. The accumulation of InsP4 isomers reflects receptor occupancy and accelerated metabolism of the inositol phosphates. Activation of second messenger-operated Ca2+ channels is not necessarily implicated because of the attenuating effect of membrane hyperpolarization.  相似文献   

10.
Toxic shock syndrome toxin-1 (TSST-1) is a 22-kDa exotoxin produced by most Staphylococcus aureus strains responsible for toxic shock syndrome. TSST-1 is a mitogen for human T cells. The mechanism of T cell activation by TSST-1 was investigated. TSST-1 induced IL-2R expression, IL-2 synthesis, and proliferation in T cells in a monocyte-dependent fashion. Neither IL-1 nor IL-2, alone or in combination, substituted for monocytes in supporting TSST-1-induced mitogenesis. We investigated the mechanism by which TSST-1 induces initogenesis. TSST-1 failed to induce ADP-ribosylation of T cell membrane proteins. However, the toxin induced transient translocation of protein kinase C from cytosol to plasma membranes and also induced the mobilization of cellular Ca2+ stores in both PBMC and the Jurkat human tumor T cell line, suggesting that TSST-1 triggered inositol phospholipid turnover. This was directly demonstrated to be the case in both cellular preparations studied. TSST-1 induced the increased synthesis of the inositol phospholipid phosphatidyl inositol, phosphatidyl inositol-4 phosphate, and phosphoinositol inositol-4,5-bisphosphate, and induced the breakdown of inositol phospholipid as evidence by the accumulation of phosphatidic acid and inositol phosphates. We conclude that the action of TSST-1 involves the induction of inositol phospholipid turnover, protein kinase C activation, and mobilization of cellular Ca2+ stores. This effect is similar to that of mitogenic lectins and of anti-CD3 antibodies.  相似文献   

11.
The ability of ANP to inhibit the hydrolysis of phosphoinositides was examined in [3H] myoinositol-labeled intact murine Leydig tumor (MA-10) cells. Arginine vasopressin (AVP) stimulated the formation of inositol monophosphate (IP1), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) both in a time- and dose- dependent manner in MA-10 cells. ANP inhibited the AVP-induced formation of IP1, IP2, and IP3 in these cells. The inhibitory effect of ANP on the AVP-stimulated formation of IP1, IP2, and IP3 accounted for 30%, 38% and 42%, respectively, which was observed at the varying concentrations of AVP. ANP caused a dose-dependent attenuation in AVP-stimulated production of IP1, IP2 and IP3 with maximum inhibition at 100 nM concentration of ANP. The production of inositol phosphates was inhibited in the presence of 8- bromo cGMP in a dose-dependent manner, whereas dibutyryl-cAMP had no effect on the generation of these metabolites. The LY 83583, an inhibitor of guanylyl cyclase and cGMP production, abolished the inhibitory effect of ANP on the AVP-stimulated production of inositol phosphates. Furthermore, 10 M LY 83583 also inhibited the ANP-stimulated guanylyl cyclase activity and the intracellular accumulation of cGMP by more than 65–70%. The inhibition of eGMP-dependent protein kinase by H-8, significantly restored the levels of AVP-stimulated inositol phosphates in the presence of either ANP or exogenous 8-bromo cGMP. The results of this study suggest that ANP exerts an inhibitory effect on the production of inositol phosphates in murine Leydig tumor (MA-10) cells by mechanisms involving cGMP and cGMP-dependent protein kinase.Established Investigator of the American Heart Association  相似文献   

12.
Arginine vasopressin (AVP) induces immediate prostaglandin E(2) (PGE(2)) production in rat 3Y1 fibroblasts. Judging from effects of several inhibitors, cytosolic phospholipase A(2)alpha (cPLA(2)alpha) and cyclooxygenase-1 (COX-1) were mainly involved in this reaction. The antagonist of vasopressin receptor V1a, and not that of V2, inhibited the AVP-induced PGE(2) synthesis, indicating that AVP activates cPLA(2)alpha through V1a receptor. Treatment of 3Y1 cells with AVP resulted in transient activation of p44/42 mitogen-activated protein kinase (MAPK) and cPLA(2)alpha, and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked not only AVP-induced PGE(2) synthesis but also MAPK activation, suggesting that PI3K is involved in the AVP-induced MAPK and cPLA(2)alpha activation, which initiates the production of PGE(2). These results suggest that PGE(2) generated by the stimulation of AVP probably modulates the physiological effects of AVP.  相似文献   

13.
The alpha 1-adrenergic receptor has been shown to mediate the release of arachidonic acid in FRTL5 thyroid cells and MDCK kidney cells. In primary cultures of spinal cord cells, norepinephrine stimulated release of arachidonic acid (from neurons only) and turnover of inositol phospholipids (from neurons and glia) via alpha 1-adrenergic receptors. These two responses were dissociated by treatment with phorbol ester and pertussis toxin, which inhibited production of inositol phosphates with no appreciable effect on release of arachidonic acid. Extracellular calcium was required for release of arachidonic acid, but not for production of inositol phosphates. The calcium channel blockers nifedipine and verapamil inhibited release of arachidonic acid only. However, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a compound that blocks intracellular calcium release, diminished production of inositol phosphates, but had little effect on release of arachidonic acid. These results suggest that alpha 1-adrenergic receptors couple to release of arachidonic acid in primary cultures of spinal cord cells by a mechanism independent of activation of phospholipase C, possibly via the activation of phospholipase A2.  相似文献   

14.
Vasopressin (AVP) and CRH synergistically regulate adrenocorticotropin and insulin release at the level of the pituitary and pancreas, respectively. Here, we first extended these AVP and CRH coregulation processes to the adrenal medulla. We demonstrate that costimulation of chromaffin cells by AVP and CRH simultaneously induces a catecholamine secretion exceeding the one induced by each hormone alone, thus demonstrating a net potentiation. To further elucidate the molecular mechanisms underlying this synergism, we coexpressed human V1b and CRH receptor (CRHR)1 receptor in HEK293 cells. In this heterologous system, AVP also potentiated CRH-stimulated cAMP accumulation in a dose-dependent and saturable manner. This effect was only partially mimicked by phorbol ester or inhibited by a phospholipase C inhibitor respectively. This finding suggests the existence of an new molecular mechanism, independent from second messenger cross talk. Similarly, CRH potentiated the AVP-induced inositol phosphates production. Using bioluminescence resonance energy transfer, coimmunoprecipitation, and receptor rescue experiments, we demonstrate that V1b and CRHR1 receptors assemble as heterodimers. Moreover, new pharmacological properties emerged upon receptors cotransfection. Taken together, these data strongly suggest that direct molecular interactions between V1b and CRHR1 receptors play an important role in mediating the synergistic interactions between these two receptors.  相似文献   

15.
Arg8-vasopressin (AVP) is a potent inducer of myogenic differentiation stimulating the expression of myogenic regulatory factors. To understand the mechanism of its effect on myogenesis, we investigated the early signals induced by AVP in myogenic target cells. In the rat skeletal muscle cell line L6, AVP selectively stimulates phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) breakdown, through the activation of phospholipases C and D (PLC, PLD), as shown by the generation of Ins(1,4,5)P3 and phosphatidylethanol (PtdEtOH), respectively. AVP induces the biphasic increase of sn-1,2-diacylglycerol (DAG) consisting in a rapid peak followed by a sustained phase, and the monophasic generation of phosphatidic acid (PA). Propranolol (a PA phosphatase inhibitor) and Zn2+ (a PLD inhibitor), abolish the sustained phase of DAG generation. Our data indicate that PtdIns-PLC activity is mainly responsible for the rapid phase of AVP-dependent DAG generation, whereas the sustained phase is dependent upon PtdCho-PLD activity and PA dephosphorylation, ruling out any significant role of DAG kinase. Modifications of PA level correlate with parallel changes of PLC activity, indicating a possible cross-talk between the two signal transduction pathways in the intact cell. PLD activation is elicited at AVP concentrations two orders of magnitude lower than those required for PLC activation. The differentiation of L6 myoblasts into multinucleated fibers is stimulated significantly by AVP at concentrations at which PLD, but not PLC, is activated. These data provide the first evidence for an important role of PLD in the mechanism of AVP-induced muscle differentiation. J. Cell. Physiol. 171:34–42, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Intracellular free calcium concentration ([Ca2+]i) was measured in fura-2-loaded single rat mesangial cells by dual wavelength spectrofluorometry. Stimulation with arginine vasopressin (AVP) caused an initial sharp rise of [Ca2+]i followed by repetitive spikes. The frequency of the oscillations was dependent on the concentration of AVP. At 0.1, 1.0, 10.0, and 100.0 nM AVP, the frequencies of oscillations were 0.17 +/- 0.05 (n = 6), 0.32 +/- 0.05 (n = 6), 0.49 +/- 0.05 (n = 6), and 0.48 +/- 0.05 min-1 (n = 5), respectively. Reduction in extracellular [Ca2+] reduced the frequency of AVP-induced oscillations but did not abolish the oscillations. The frequency of calcium oscillations, upon stimulation with 1.0 nM AVP, was directly correlated with the basal [Ca2+]i prior to stimulation. Oscillation frequency increased with increasing temperature. An Arrhenius plot between 24 and 37 degrees C indicated a strong temperature dependency of the oscillations with a Q10 of 3.0. Protein kinase C stimulation by active phorbol esters inhibited AVP-induced calcium oscillations but not the initial [Ca2+] response to AVP. These observations are consistent with a model incorporating a feedback loop linking [Ca2+]i to the mechanism of [Ca2+]i increase. Ca(2+)-induced Ca2+ release may be involved, whereby inositol 1,4,5-trisphosphate (inositol 1,4,5-P3) formation releases Ca2+ from an inositol 1,4,5-P3-sensitive pool, with subsequent Ca2+ uptake and release from an inositol 1,4,5-P3-insensitive pool.  相似文献   

17.
Noncyclooxygenase metabolites of arachidonic acid may be potent modulators of the mitogenic response of renal mesangial cells to the mitogenic vasoactive peptide arginine vasopressin (AVP). Since Ca2+ is a critical second messenger in the response of mesangial cells to AVP, and Ca2+ has been implicated in the regulation of growth, we determined whether noncyclooxygenase metabolites altered the phospholipase C-Ca2+ signalling cascade which is activated by AVP. Pretreatment of mesangial cells for 10 min with lipoxygenase and cytochrome P450 monooxygenase inhibitors, nordihydroguaiaretic acid (NDGA, 10(-5) M) or SKF-525A (2.5 x 10(-5) M), but not the cyclooxygenase inhibitor indomethacin (2 x 10(-5) M), reduced the magnitude of the AVP (10(-8) and 10(-7) M)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) without affecting inositol trisphosphate production. With 10(-8) M AVP, [Ca2+]i increased to 250 +/- 47 nM in NDGA-treated cells versus 401 +/- 59 nM in control cells (p less than 0.01). [Ca2+]i, measured 2 min after exposure to AVP, was also lower with NDGA (152 +/- 21 nM) when compared with AVP alone (220 +/- 22 nM, p less than 0.01). 14,15-epoxyeicosatrienoic acid (EET) (10(-8) M), which had no effect on inositol trisphosphate production, completely reversed the NDGA-induced inhibition of the [Ca2+]i transient, whereas 5-hydroperoxyeicosatetraenoic acid (HPETE) (5 x 10(-7) M) did not. Pretreatment with higher concentrations of 14,15-EET (10(-7)-10(-6) M) markedly potentiated the AVP-induced increase in [Ca2+]i. NDGA-induced inhibition of the AVP-generated [Ca2+]i transient was also observed when cells were incubated in low Ca2+ media ([Ca2+] less than 5 x 10(-8) M), suggesting that NDGA pretreatment impaired intracellular release of Ca2+. Since NDGA had no direct effect on inositol 1,4,5-trisphosphate-induced Ca2+ release, we postulated that NDGA blocked production of a metabolite that releases Ca2+ from intracellular stores. 14,15-EET and 15-HPETE, but not 15-hydroxyeicosatetraenoic acid (each at 3 x 10(-7) M), raised [Ca2+]i when added directly to cells in low Ca2+ media. In permeabilized cells 14,15-EET and 15-HPETE (10(-7) M) potently released Ca2+ from intracellular stores. In summary, noncyclooxygenase metabolites of arachidonic acid, and in particular P450 metabolites, are potent endogenous amplifiers of the AVP-induced [Ca2+]i signal by mechanisms not directly involving phospholipase C activation. This effect is mediated, at least in part, by enhanced release of Ca2+ from intracellular storage sites by an inositol 1,4,5-trisphosphate-independent mechanism.  相似文献   

18.
The role(s) of protein kinases in the regulation of G protein-dependent activation of phosphatidylinositol-specific phospholipase C by tumor necrosis factor-alpha was investigated in the osteoblast cell line MC3T3-E1. We have previously reported the stimulatory effects of tumor necrosis factor-alpha and A1F4, an activator of G proteins, on this phospholipase pathway documented by a decrease in mass of PI and release of diacylglycerol. In this study, we further explored the mechanism(s) by which the tumor necrosis factor or A1F4 -promoted breakdown of phosphatidylinositol and the polyphosphoinositides by phospholipase C is regulated. Tumor necrosis factor-alpha was found to elicit a 4–5-fold increase in the formation of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate; and a 36% increase in [3H]inositol-1-phosphate within 5 min in prelabeled cells. [3H]inositol-4-phosphate, a metabolite of [3H]inositol-1,4-phosphate and [3H]inositol-1,4,5-phosphate, was found to be the predominant phosphoinositol product of tumor necrosis factor-alpha and A1F4 -activated phospholipase C hydrolysis after 30 min. In addition, the preincubation of cells with pertussis toxin decreased the tumor necrosis factor-induced release of inositol phosphates by 53%. Inhibitors of protein kinase C, including Et-18-OMe and H-7, dramatically decreased the formation of [3H]inositol phosphates stimulated by either tumor necrosis factor-alpha or A1F4 by 90–100% but did not affect basal formation. The activation of cAMP-dependent protein kinase, or protein kinase A, by the treatment of cells with forskolin or 8-BrcAMP augmented basal, tumor necrosis factor-alpha and A1F4-induced [3H]inositol phosphate formation. Therefore, we report that protein kinases can regulate tumor necrosis factor-alpha-initiated signalling at the cell surface in osteoblasts through effects on the coupling between receptor, G-protein and phosphatidylinositol-specific phospholipase C. J. Cell. Biochem. 65:198–208. © 1997 Wiley-Liss, Inc.  相似文献   

19.
We directly manipulated the levels of PtdIns, PtdInsP and PtdInsP2 in digitonin-treated adrenal chromaffin cells with a bacterial phospholipase C (PLC) from Bacillus thuringiensis and by removal of ATP. The PtdIns-PLC acted intracellularly to cause a large decrease in [3H]inositol- or [32P]phosphate-labelled PtdIns, but did not directly hydrolyse PtdInsP or PtdInsP2. [3H]PtdInsP and [3H]PtdInsP2 levels declined markedly, probably because of the action of phosphatases in the absence of synthesis. Removal of ATP also caused marked decreases in [3H]PtdInsP and [3H]PtdInsP2. The decrease in polyphosphoinositide levels by PtdIns-PLC treatment or ATP removal was reflected by the inhibition of the production of inositol phosphates upon subsequent activation of the endogenous PLC by Ca2(+)-dependent catecholamine secretion from permeabilized cells was strongly inhibited by PtdIns-PLC treatment and by ATP removal. Ca2(+)-dependent secretion was similarly correlated with the sum of PtdInsP and PtdInsP2 when the level of these lipids was changed by either manipulation. PtdIns-PLC inhibited only the ATP-dependent component of secretion and did not affect ATP-dependent secretion. Both PtdIns-PLC and ATP removal inhibited the late slow phase of secretion, but had little effect on the initial rapid phase. Although we found a tight correlation between polyphosphoinositide levels and secretion, endogenous phospholipase C activity (stimulated by Ca2+, guanine nucleotides and related agents) was not correlated with secretion. Additional experiments indicated that neither the products of the PtdIns-PLC reaction (diacylglycerol and InsP1) nor the inability to generate products by subsequent activation of the endogenous PLC is likely to account for the inhibition of secretion. Incubation of permeabilized cells with neomycin in the absence of ATP maintained the level of polyphosphoinositides and more than doubled subsequent Ca2(+)-dependent secretion. The data suggest that: (1) Ca2(+)-dependent secretion has a requirement for the presence of inositol phospholipids; (2) the enhancement of secretion by ATP results in part from increased polyphosphoinositide levels; and (3) the role for inositol phospholipids in secretion revealed in these experiments is independent of their being substrates for the generation of diacylglycerol and InsP3.  相似文献   

20.
Binding of platelet-derived growth factor (PDGF) to the PDGF receptor (PDGFR) beta subunit triggers receptor tyrosine phosphorylation and the stable association of a number of signal transduction molecules, including phospholipase C gamma (PLC gamma), the GTPase activating protein of ras (GAP), and phosphatidylinositol-3 kinase (PI3K). Previous reports have identified three PDGFR tyrosine phosphorylation sites in the kinase insert domain that are important for stable association of GAP and PI3K. Two of them, tyrosine (Y) 740, and Y-751 are required for the stable association of PI3K, while Y-771 is required for binding of GAP. Here we present data for two additional tyrosine phosphorylation sites, Y-1009 and Y-1021, that are both in the carboxy-terminal region of the PDGFR. Characterization of PDGFR mutants in which these phosphorylation sites are substituted with phenylalanine (F) indicated that Y-1021 and Y-1009 were required for the stable association of PLC gamma and a 64-kDa protein, respectively. An F-1009/F-1021 double mutant selectively failed to bind both PLC gamma and the 64-kDa protein, whereas all of the carboxy-terminal mutants bound wild-type levels of GAP and PI3K. The carboxy terminus encodes the complete binding site for PLC gamma, since a phosphorylated carboxy-terminal fusion protein selectively bound PLC gamma. To determine the biological consequences of failure to associate with PLC gamma, we measured PDGF-dependent inositol phosphate production and initiation of DNA synthesis. The PDGFR mutants that failed to associate with PLC gamma were not able to mediate the PDGF-dependent production of inositol phosphates. Since tyrosine phosphorylation of PLC gamma enhances its enzymatic activity, we speculated that PDGFR mutants that failed to activate PLC gamma were unable to mediate its tyrosine phosphorylation. Surprisingly, the F-1021 receptor mediated readily detectable levels of PDGF-dependent PLC gamma tyrosine phosphorylation. Thus, the production of inositol phosphates requires not only PLC gamma tyrosine phosphorylation but also its association with the PDGFR. Comparison of the mutant PDGFRs' abilities to initiate PDGF-dependent DNA synthesis indicated that failure to associate with PLC gamma and produce inositol phosphates diminished the mitogenic response by 30%. In contrast, preventing the PDGFR from binding the 64-kDa protein did not compromise PDGF-triggered DNA synthesis at saturating concentrations of PDGF. Thus, it appears that phosphorylation of the PDGFR at Y-1021 is required for the stable association of PLC gamma to the receptor's carboxy terminus, the production of inositol phosphates, and initiation of the maximal mitogenic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号