首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Chen C  Chou C  Sun Y  Huang W 《Cellular signalling》2001,13(8):543-553
TNF-alpha induced an increase in intercellular adhesion molecule-1 (ICAM-1) expression in human A549 epithelial cells and immunofluorescence staining confirmed this result. The enhanced ICAM-1 expression was shown to increase the adhesion of U937 cells to A549 cells. Tyrosine kinase inhibitors (genistein or tyrphostin 23) or phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D 609) attenuated TNF-alpha-induced ICAM-1 expression. TNF-alpha produced an increase in protein kinase C (PKC) activity and this effect was inhibited by D 609. PKC inhibitors (staurosporine, Ro 31-8220, calphostin C, or Go 6976) also inhibited TNF-alpha-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression, this effect was inhibited by genistein or tyrphostin 23. Treatment of cells with TNF-alpha resulted in stimulation of p44/42 MAPK, p38, and JNK. However, TNF-alpha-induced ICAM-1 expression was not affected by either MEK inhibitor, PD 98059, or p38 inhibitor, SB 203580. A cell-permeable ceramide analog, C(2) ceramide, also stimulated the activation of these three MAPKs, but had no effect on ICAM-1 expression. NF-kappaB DNA-protein binding and ICAM-1 promoter activity were enhanced by TNF-alpha and these effects were inhibited by D 609, calphostin C, or tyrphostin 23, but not by PD 98059 or SB 203580. TPA also stimulated NF-kappaB DNA-protein binding and ICAM-1 promoter activity, these effects being inhibited by genistein or tyrphostin 23. TNF-alpha- or TPA-induced ICAM-1 promoter activity was inhibited by dominant negative PKCalpha or IKK2, but not IKK1 mutant. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by Ro 31-8220 or tyrphostin 23. These data suggest that, in A549 cells, TNF-alpha activates PC-PLC to induce activation of PKCalpha and protein tyrosine kinase, resulting in the stimulation of IKK2, and NF-kappaB in the ICAM-1 promoter, then initiation of ICAM-1 expression and neutrophil adhesion. However, activation of p44/42 MAPK, p38, and JNK is not involved in this event.  相似文献   

4.
TNF-alpha alters leukocyte adhesion molecule expression of cultured endothelial cells like human umbilical vein endothelial cells (HUVEC). This study was designed to investigate the changes in vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) expression with TNF-alpha stimulation in cultured human neonatal dermal lymphatic endothelial cells (HNDLEC). The real-time quantitative PCR analysis on HNDLEC showed that TNF-alpha treatment leads to increases of VCAM-1 and ICAM-1 mRNAs to the 10.8- and 48.2-fold levels of untreated cells and leads to a reduction of PECAM-1 mRNA to the 0.42-fold level of untreated cells. Western blot and immunohistochemical analysis showed that TNF-alpha leads to VCAM-1 and ICAM-1 expressions that were inhibited by antiserum to human TNF receptor or by AP-1 inhibitor nobiletin. In flow cytometry analysis, the number of VCAM-1- and ICAM-1-positive cells increased, and PECAM-1-positive cells decreased with TNF-alpha treatment. Regarding protein amounts produced in cells and amounts expressed on the cell surface, VCAM-1 and ICAM-1 increased in HNDLEC and HUVEC, and PECAM-1 decreased in HNDLEC in a TNF-alpha concentration-dependent manner. VCAM-1, ICAM-1, and PECAM-1 protein amounts in TNF-alpha-stimulated cells were lower in HNDLEC than in HUVEC. This suggests that the lymphatic endothelium has the TNF-alpha-induced signaling pathway, resulting in increased VCAM-1 and ICAM-1 expression to a weaker extent than blood endothelium and PECAM-1 reduction to a stronger extent than blood endothelium.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Targeting cannabinoid-2 (CB(2)) receptors with selective agonists may represent a novel therapeutic avenue in various inflammatory diseases, but the mechanisms by which CB(2) activation exerts its anti-inflammatory effects and the cellular targets are elusive. Here, we investigated the effects of CB(2)-receptor activation on TNF-alpha-induced signal transduction in human coronary artery endothelial cells in vitro and on endotoxin-induced vascular inflammatory response in vivo. TNF-alpha induced NF-kappaB and RhoA activation and upregulation of adhesion molecules ICAM-1 and VCAM-1, increased expression of monocyte chemoattractant protein, enhanced transendothelial migration of monocytes, and augmented monocyte-endothelial adhesion. Remarkably, all of the above-mentioned effects of TNF-alpha were attenuated by CB(2) agonists. CB(2) agonists also decreased the TNF-alpha- and/or endotoxin-induced ICAM-1 and VCAM-1 expression in isolated aortas and the adhesion of monocytes to aortic vascular endothelium. CB(1) and CB(2) receptors were detectable in human coronary artery endothelial cells by Western blotting, RT-PCR, real-time PCR, and immunofluorescence staining. Because the above-mentioned TNF-alpha-induced phenotypic changes are critical in the initiation and progression of atherosclerosis and restenosis, our findings suggest that targeting CB(2) receptors on endothelial cells may offer a novel approach in the treatment of these pathologies.  相似文献   

12.
Astrocytes participate in CNS innate immune responses as evident by their ability to produce a wide array of inflammatory mediators upon exposure to diverse stimuli. Although we have established that astrocytes use TLR2 to signal inflammatory mediator production in response to Staphylococcus aureus, a common etiological agent of CNS infections, the signal transduction pathways triggered by this pathogen and how TLR2 expression is regulated remain undefined. Three disparate inhibitors that block distinct steps in the NF-kappaB pathway, namely SC-514, BAY 11-7082, and caffeic acid phenethyl ester, attenuated NO, TNF-alpha, and CXCL2 release from S. aureus-activated astrocytes. Among these proinflammatory mediators, autocrine/paracrine TNF-alpha was pivotal for augmenting TLR2 expression, since receptor levels were not elevated in astrocytes isolated from TNF-alpha knockout mice upon bacterial exposure. Since TLR2 is critical for signaling astrocytic cytokine production in response to S. aureus, we evaluated the effect of TNF-alpha loss on proinflammatory mediator release. Interestingly, among the molecules assayed, only NO production was significantly attenuated in TNF-alpha knockout astrocytes compared with wild-type cells. Similar results were obtained following LPS treatment, suggesting that TNF-alpha is an important regulator of astrocytic TLR2 expression and NO release in response to diverse microbial stimuli. In addition, NF-kappaB inhibitors attenuated TNF-alpha-induced TLR2 expression in astrocytes. Overall, this study suggests that two important anti-bacterial effector molecules, TLR2 and NO, are regulated, in part, by NF-kappaB-dependent autocrine/paracrine effects of TNF-alpha in astrocytes.  相似文献   

13.
The objectives were to determine the effects of alacepril, an angiotensin-converting enzyme inhibitor, on the expression of adhesion molecules and monocyte adherence to endothelial cells induced by 7-ketocholesterol (7-KC) and tumor necrosis factor (TNF)-alpha. We used human aortic endothelial cells (HAECs) and U937 monocytic cells. Surface expression and mRNA levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) were determined by EIA and RT-PCR. Adherence of U937 to HAECs was assessed by adhesion assay. Incubation of HAEC with 7-KC increased the surface expression of protein and mRNA levels of ICAM-1 and VCAM-1 on HAECs and the production of reactive oxygen species (ROS) in HAECs. Pretreatment with alacepril reduced the enhanced expression of these molecules in a dose-dependent manner. The inhibitory effect of alacepril against 7-KC or TNF-alpha-induced CAMs expression was stronger than that of captopril or enalapril. Alacepril inhibited the production of ROS in HAECs stimulated by 7-KC or TNF-alpha. These results suggest that alacepril works as anti-atherogenic agent through inhibiting endothelial-dependent adhesive interactions with monocytes induced by 7-KC and TNF-alpha.  相似文献   

14.
15.
In response to inflammation stimuli, tumor necrosis factor-alpha (TNF-alpha) induces expression of cell adhesion molecules (CAMs) in endothelial cells (ECs). Studies have suggested that the nuclear factor-kappaB (NF-kappaB) and the p38 MAP kinase (p38) signaling pathways play central roles in this process, but conflicting results have been reported. The objective of this study is to determine the relative contributions of the two pathways to the effect of TNF-alpha. Our initial data indicated that blockade of p38 activity by chemical inhibitor SB203580 (SB) at 10 microM moderately inhibited TNF-alpha-induced expression of three types of CAMs; ICAM-1, VCAM-1 and E-selectin, indicating that p38 may be involved in the process. However, subsequent analysis revealed that neither 1 microM SB that could completely inhibit p38 nor specific knockdown of p38alpha and p38beta with small interference RNA (siRNA) had an apparent effect, indicating that p38 activity is not essential for TNF-alpha-induced CAMs. The most definitive evidence to support this conclusion was from the experiments using cells differentiated from p38alpha knockout embryonic stem cells. We could show that deletion of p38alpha gene did not affect TNF-alpha-induced ICAM-1 and VCAM-1 expression when compared with wild-type cells. We further demonstrated that inhibition of NF-kappaB completely blocked TNF-alpha-induced expression of ICAM-1, VCAM-1 and E-selectin. Taken together, our results clearly demonstrate that NF-kappaB, but not p38, is critical for TNF-alpha-induced CAM expression. The inhibition of SB at 10 microM on TNF-alpha-induced ICAM-1, VCAM-1 and E-selectin is likely due to the nonspecific effect of SB.  相似文献   

16.
Leukocyte infiltration is a hallmark of the atherosclerotic lesion. These cells are captured by cellular adhesion molecules (CAMs), including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule (PECAM), and E-selectin, on endothelial cells (EC). We examined the role of the actin cytoskeleton in tumor necrosis factor-alpha (TNF-alpha)-induced translocation of CAMs to the cell surface. Human aortic EC were grown on 96-well plates and an ELISA was used to assess surface expression of the CAMs. TNF-alpha increased VCAM-1, ICAM-1, and E-selectin by 4 h but had no affect on the expression of PECAM. A functioning actin cytoskeleton was important for VCAM-1 and ICAM-1 expression as both cytochalasin D, an actin filament disruptor, and jasplakinolide, an actin filament stabilizer, attenuated the expression of these CAMs. These compounds were ineffective in altering E-selectin surface expression. Myosin light chains are phosphorylated in response to TNF-alpha and this appears to be regulated by Rho kinase instead of myosin light chain kinase. However, the Rho kinase inhibitor, Y27632, had no affect on TNF-alpha-induced CAM expression. ML-7, a myosin light chain kinase inhibitor, had a modest inhibitory effect on the translocation of VCAM-1 but not on ICAM-1 or E-selectin. These data suggest that the surface expression of VCAM-1 and ICAM-1 is dependent on cycling of the actin cytoskeleton. Nevertheless, modulation of actin filaments via myosin light chain phosphorylation is not necessary. The regulation of E-selectin surface expression differs from that of the other CAMs.  相似文献   

17.
Reactive oxygen species have various effects on the expression of cell adhesion molecules induced by proinflammatory cytokines, such as tumor necrosis factor a (T-NF-alpha). We studied the effects of monochloramine (NH2Cl), a physiological oxidant derived from activated neutrophils, on the TNF-alpha-induced expression of E-selectin and intercellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells (HUVEC). HUVEC were pretreated with or without NH2Cl (20-90 microM for 20 min), then stimulated with TNF-alpha (10 ng/ml), and the expression of E-selectin and ICAM-1 was measured. Without NH2Cl, TNF-alpha induced marked expression of e-selectin and ICAM-1. Pretreatment with NH2Cl resulted in a significant, but transient inhibition of the expression of adhesion molecules. Higher dose of NH2Cl showed more pronounced inhibition, and the inhibitory effect lasted for 8h when 70 microM of NH2Cl was added. TNF-alpha stimulation also induced marked activation of nuclear factor KB (NF-kappaB). Notably, NH2Cl also inhibited this NF-kappaB activation in a dose- and time-dependent manner, which was similar to the inhibition of E-selectin and ICAM-1 expression. In addition, IkappaB-alpha phosphorylation and degradation were also inhibited by NH2Cl pretreatment. These observations indicated that NH2Cl inhibited TNF-alpha-induced expression of E-selectin and ICAM-1 through the inhibition of NF-kappaB activation. We speculate that neutrophil-derived chloramines may have a regulatory role in the recruitment of leukocytes.  相似文献   

18.
19.
ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.  相似文献   

20.
The effect of glutathione (GSH) depletion by L-buthionine-[S,R]-sulphoximine (BSO) on tumor necrosis factor-alpha (TNF-alpha)-induced adhesion molecule expression and mononuclear leukocyte adhesion to human umbilical vein endothelial cells (HUVECs) was investigated. Cells with marked depletion of cytoplasmic GSH, but with an intact pool of mitochondrial GSH, only slightly enhanced TNF-alpha-induced E-selectin and vascular cell adhesion molecule-1 (VCAM-1) expression, compared with the control. However, TNF-a-induced expression of both molecules was markedly enhanced when the mitochondrial GSH pool was diminished to <15% of the control. In contrast, TNF-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression was not affected by the depletion of either cytoplasmic or mitochondrial GSH. Marked enhancement of TNF-alpha-induced adhesion molecule expression by the depletion of mitochondrial GSH resulted in increased in mononuclear leukocyte adhesion to treated HUVECs, compared with the control. These effects parallel reactive oxygen species (ROS) formation by the depletion of mitochondrial but not cytoplasmic GSH. Our findings demonstrate that depletion of mitochondrial GSH renders more ROS generation in HUVECs, and mitochondrial GSH modulates TNF-alpha-induced adhesion molecule expression and mononuclear leukocyte adhesion in HUVECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号