首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The phosphorylase phosphatase and glycogen-synthase phosphatase activities associated with the glycogen particles from rat liver were progressively inhibited by incubation with modulator protein. However, the phosphorylase phosphatase activity of the catalytic subunit was entirely recovered after destruction of the modulator and the regulatory subunit(s) by trypsin. 2. Inhibition of protein phosphatase G by modulator was associated with a translocation of the phosphorylase phosphatase activity (measured after incubation with trypsin) from glycogen to the soluble fraction. The degree of inhibition of phosphatase G corresponded closely to the extent to which the phosphorylase phosphatase activity was released from the glycogen particles. Incubation of glycogen-free protein phosphatase G with modulator did not change the affinity of the enzyme for added glycogen, but decreased the amount of phosphatase that could be bound to glycogen. 3. The phosphorylase phosphatase activity that was released from the glycogen particles by modulator migrated on gel filtration as a complex (Mr 106,000) of the catalytic subunit with modulator. Phosphorylase phosphatase activity could be transferred from glycogen-bound protein phosphatase G to modulator that was covalently bound to Sepharose. After elution from the column, the enzyme was identified as the free catalytic subunit (Mr 37,000).  相似文献   

2.
Phosphorylase phosphatase from skeletal muscle membranes   总被引:2,自引:0,他引:2  
Microsomes containing 12-15 U/mg phosphorylase phosphatase were obtained from skeletal muscle glycogen particles following glycogen digestion and differential centrifugation. The phosphatase associated with the membranes is in an inhibited state; dilution induces dissociation and deinhibition of the enzyme. Phosphatase-depleted membranes can rebind purified phosphatase catalytic subunit but not the complex between catalytic subunit and inhibitor 2. Binding involves a receptor, deduced from saturation phenomena, which is responsible for inhibition of the bound enzyme and which is a protein, since trypsin treatment releases all bound enzyme and prevents rebinding. The phosphatase extracted from the membranes is of type 1 and is a mixture of complexes, the major ones displaying a Mr of 300,000 and 70,000. From these complexes the 35-kDa catalytic subunit can be obtained either by trypsin treatment or by acetone precipitation. Purification to homogeneity involves chromatography on polylysine and FPLC chromatography on Mono Q and Polyanion SI columns. The purified enzyme exhibits a specific activity of 26,800 U/mg (27,900 U/mg after trypsin treatment) and consists of a major protein of 38 kDa (SDS gel electrophoresis). A minor component of 33 kDa, which may represent either a proteolytic product or an isozyme, can be separated. Both 38-kDa and 33-kDa catalytic subunits form a 70-kDa inactive complex with inhibitor 2 and upon incubation of the complexes the catalytic subunit is slowly converted to the inactive conformation which can then be reactivated by either the kinase FA or trypsin and Mn2+. Alternatively the inactive catalytic subunit is reactivated by Mn2+ alone once it has been isolated by FPLC chromatography on SI. The observation that the same catalytic subunit is present at various cell locations (namely cytosol, glycogen particles and microsomes), though in different conformations, is in favour of the hypothesis that displacement of the catalytic subunit from one cell site to the other may represent a new mechanism for phosphatase regulation in skeletal muscle.  相似文献   

3.
INH, a negative regulator of MPF, is a form of protein phosphatase 2A.   总被引:54,自引:0,他引:54  
MPF, a protein kinase complex consisting of cyclin and p34cdc2 subunits, promotes the G2 to M phase transition in eukaryotic cells. The pathway of activation and inactivation of MPF is not well understood, although there is strong evidence that removal of phosphate from a tyrosine residue on p34cdc2 is part of the activation process. INH was originally identified as an activity that could inhibit the posttranslational activation of a latent form of MPF, called pre-MPF, in immature (G2 phase-arrested) Xenopus oocytes. We have purified INH and demonstrated that it is a form of protein phosphatase 2A. Both INH and the catalytic subunit of protein phosphatase 2A can directly inactivate an isolated p34cdc2-cyclin complex. Both cyclin and p34cdc2 become dephosphorylated; the rate of inactivation closely parallels the removal of phosphate from a specific site on p34cdc2. We propose that INH opposes MPF activation by reversing this critical phosphorylation.  相似文献   

4.
Protein phosphatase 2A consists of a heterotrimeric complex composed of a catalytic subunit (C) and two associated subunits (A and B). Limited tryptic digestion of the heterotrimeric ABC form resulted in the selective degradation of the Mr = 55,000 B subunit to a 48-kDa polypeptide. The cleavage sites were determined to be within a 3-7-kDa region of the COOH terminus. Proteolysis led to dissociation of the B subunit from the enzyme complex and correlated with an increase in cardiac myosin light chain, smooth muscle myosin light chain peptide, and Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) phosphatase activity. Purification of the digestion products and native gel electrophoresis indicated that dissociation of the B subunit was responsible for the increase in phosphatase activity. Kinetic analyses with several substrates revealed that dissociation of the B subunit resulted in a 2-7-fold increase in Vmax and a 1.6-5 fold increase in Km. Proteolytic dissociation of the B subunit increased the sensitivity of protein phosphatase 2A to inhibition by okadaic acid. Inhibition of the trypsinized enzyme was very similar to that observed for the purified AC form of protein phosphatase 2A. Incubation of the ABC complex with N-ethylmaleimide resulted in dissociation of the C subunit and generation of an AB complex. Selective release of the C subunit indicated that the B subunit interacts directly with the A subunit and that one or more free sulfhydryls are required to maintain the heterotrimeric structure of protein phosphatase 2A. Treatment of the enzyme with heparin resulted in an increase in specific activity that was due to the release of the B subunit from the complex. These results provide evidence that the B subunit binds directly to the A subunit to modulate enzyme activity and substrate specificity and that the COOH-terminal region of this protein is important for interaction with the AC complex. Dissociation of the B subunit by polyanionic substances related to heparin may represent a mechanism for regulating the activity of this enzyme.  相似文献   

5.
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.  相似文献   

6.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

7.
In unfractioned reticulocyte lysate, interaction of eukaryotic initiation factor 2 (eIF-2) with other components regulates the accessibility of phosphatases and kinases to phosphorylation sites on its alpha and beta subunits. Upon addition of eIF-2 phosphorylated on both alpha and beta subunits (eIF-2(alpha 32P, beta 32P) to lysate, the alpha subunit is rapidly dephosphorylated, but the beta subunit is not. In contrast, both sites are rapidly dephosphorylated by the purified phosphatase. The basis of this altered specificity appears to be the association of eIF-2 with other translational components rather than an alteration of the phosphatase. Formation of an eIF-2(alpha 32P,beta 32P) Met-tRNAi X GTP ternary complex prevents dephosphorylation of the beta subunit, but has no effect on the rate of alpha dephosphorylation. eIF-2B, a 280,000-dalton polypeptide complex required for GTP:GDP exchange, also protects the beta subunit phosphorylation site from the purified phosphatase. However, the dephosphorylation of eIF-2(alpha 32P) is inhibited by 75% while complexed with eIF-2B. The altered phosphatase specificity upon association of eIF-2 with eIF-2B also affects the access of protein kinases to these phosphorylation sites. In the eIF-2B X eIF-2 complex, the alpha subunit is phosphorylated at 30% the rate of free eIF-2. Under identical conditions, phosphorylation of eIF-2 beta can not be detected. These results illustrate the importance of substrate conformation and/or functional association with other components in determining the overall phosphorylation state allowed by alterations of kinase and phosphatase activities.  相似文献   

8.
A third form of protein phosphatase 1 has been identified in skeletal muscle which is distinct from the species composed of the catalytic subunit complexed to the glycogen-binding subunit (protein phosphatase 1G) or inhibitor-2 (protein phosphatase 1I). The third form has an apparent molecular mass of 110 kDa, is not immunoprecipitated by antibody prepared against the glycogen-binding subunit, does not interact with glycogen and is devoid of inhibitor-2. It is tightly bound to myosin and is therefore termed protein phosphatase 1M.  相似文献   

9.
The myosin-bound form of protein phosphatase 1 (PP-1M) and the glycogen-bound form (PP-1G) together account for virtually all the phosphatase activity in rabbit skeletal muscle extracts towards native myosin. PP-1M has a 3-fold higher activity towards native myosin than does PP-1G and accounts for at least 60% of the myosin phosphatase activity in rabbit skeletal muscle. PP-1M accounts for 90% of the myosin phosphatase activity in bovine cardiac muscle, where PP-1G is essentially absent. The high activity of PP-1M towards native myosin appears to arise from interaction of the catalytic subunit with the putative myosin-binding subunit, since chymotryptic digestion liberates a catalytic subunit having the same characteristics as that released by limited proteolysis of PP-1G. Protein phosphatase 2A in skeletal and cardiac muscles is very active towards the isolated myosin P-light chain, but ineffective in dephosphorylating native myosin. The results suggest that PP-1M is the enzyme that dephosphorylates myosin in skeletal and cardiac muscle.  相似文献   

10.
A type-1 protein phosphatase (protein phosphatase-1G) was purified to homogeneity from the glycogen-protein particle of rabbit skeletal muscle. Approximately 3 mg of enzyme were isolated within 4 days from 5000 g of muscle. Protein phosphatase-1G had a molecular mass of 137 kDa and was composed of two subunits G (103 kDa) and C (37 kDa) in a 1:1 molar ratio. The subunits could be dissociated by incubation in the presence of 2 M NaCl, separated by gel-filtration on Sephadex G-100, and recombined at low ionic strength. The C component was the catalytic subunit, and was identical to the 37-kDa type-1 protein phosphatase catalytic subunit (protein phosphatase-1C) isolated from ethanol-treated muscle extracts, as judged by peptide mapping. The G component was the glycogen-binding subunit. It was very asymmetric, extremely sensitive to proteolytic degradation, and failed to silver stain on SDS/polyacrylamide gels. Protein phosphatase-1G was inhibited by inhibitor-1 and inhibitor-2, but unlike protein phosphatase-1C, the rate of inactivation was critically dependent on the ionic strength, temperature and time of preincubation with the inhibitor protein. At near physiological temperature and ionic strength, protein phosphatase-1G was inactivated very rapidly by inhibitor-1. Protein phosphatase-1G interacted with inhibitor-2 (I-2) to form an inactive species, with the structure GCI-2. This form could be activated by preincubation with Mg-ATP and glycogen synthase kinase-3. The G subunit could be phosphorylated on a serine residue(s) by cyclic-AMP-dependent protein kinase, but not by phosphorylase kinase or glycogen synthase kinase-3. Phosphorylation was rapid and stoichiometric, and increased the rate of inactivation of protein phosphatase-1G by inhibitor-1. The relationship of the G subunit to the 'deinhibitor protein' is discussed.  相似文献   

11.
The protein phosphatases which dephosphorylate native, sarcoplasmic reticulum (SR)-associated phospholamban were studied in cardiac muscle extracts and in a Triton fraction prepared by detergent extraction of myofibrils, the latter fraction containing 70-80% of the SR-associated proteins present in the tissue. At physiological concentrations of free Mg2+ (1 mM), protein phosphatase 1 (PP1) accounted for approximately 70% of the total phospholamban phosphatase activity in these fractions towards either Ser-16 (the residue labelled by cAMP-dependent protein kinase, PK-A) or Thr-17 (the residue phosphorylated by an SR-associated Ca2+/calmodulin-dependent protein kinase). Protein phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C) accounted for the remainder of the activity. A major form of cardiac PP1, present in comparable amounts in both the extract and Triton fraction, was similar, if not identical, to skeletal muscle protein phosphatase 1G (PP1G), which is composed of the PP1 catalytic (C) subunit complexed to a G subunit of approximately 160 kDa, responsible for targeting PP1 to both the SR and glycogen particles of skeletal muscle. This conclusion was based on immunoblotting experiments using antibody to the G subunit, ability to bind to glycogen and the release of PP1 activity from glycogen upon incubation with PK-A and MgATP. PP1 accounted for approximately 90% of the phospholamban (Ser-16 or Thr-17) phosphatase activity in the material sedimented by centrifugation at 45,000 x g, a fraction prepared from cardiac extracts which is enriched in SR membranes. The G subunit in this fraction could be solubilised by Triton X-100, but not with 0.5 M NaCl or digestion with alpha-amylase, indicating that it is bound to membranes and not to glycogen. By analogy with the situation in skeletal muscle, the PK-A catalysed phosphorylation of the G subunit, with ensuing release of the C subunit from the SR, may prevent PP1 from dephosphorylating SR-bound substrates and represent one of the mechanisms by which adrenalin increases the phosphorylation of cardiac phospholamban (Ser-16 and Thr-17) in vivo. Hearts left in situ post mortem lose 85-95% of their PP1 activity within 20-30 min. This remarkable disappearance of PP1 may partly explain why the importance of this enzyme in cardiac muscle metabolism has not been recognized previously.  相似文献   

12.
Bovine brain contains two major calmodulin (CaM) dependent phosphodiesterase isozymes which are homodimeric proteins with subunit molecular masses of 60 and 63 kilodaltons (kDa), respectively. The 60-kDa subunit isozyme can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme affinity towards CaM. The phosphorylation is blocked by Ca2+ and CaM and reversed by the CaM-stimulated phosphatase (calcineurin). The 63-kDa subunit isozymes can also be phosphorylated, but in this case by a CaM-dependent protein kinase(s). This phosphorylation is also accompanied by a decrease in the isozyme affinity towards CaM and can be reversed by the CaM-dependent phosphatase. Analysis of the complex regulatory properties of the phosphodiesterase isozymes has led to the suggestion that fluxes of cAMP and Ca2+ during cell activations are closely coupled and that the CaM-dependent phosphodiesterase isozymes play key roles in this signal coupling phenomenon.  相似文献   

13.
A method was devised to purify branched-chain oxo acid dehydrogenase (BCOAD) from rat kidney which retains endogenous kinase activity. Incorporation of 32P into purified enzyme parallels the time course of enzyme inhibition by ATP. Phosphorylation occurs on a serine residue(s) of the 46000-mol.wt. subunit of the enzyme complex. Endogenous phosphatase activity is not present after purification, and added pyruvate dehydrogenase phosphate phosphatase does not re-activate BCOAD or liberate 32P from previously labelled enzyme. These results demonstrate that BCOAD can be regulated by an endogenous protein kinase and that the phosphorylation-cycle enzymes regulating BCOAD appear to be distinct from those associated with pyruvate dehydrogenase complex.  相似文献   

14.
We have purified the 36 and 63 kd cellular proteins known to associate with polyomavirus middle and small tumor (T) antigens and SV40 small t antigen. Microsequencing of the 36 kd protein indicated that it was probably identical to the catalytic subunit of protein phosphatase 2A (PP2A). Identity was confirmed by comigration on two-dimensional (2D) gels and by 2D analysis of complete chymotryptic digests. In addition, PP2A-like phosphatase activity was detected in immunoprecipitates of wild-type middle T. Immunoblotting experiments, comigration on 2D gels, and 2D analysis of limit chymotryptic digests demonstrated that the 63 kd protein, present in the middle T complex in approximately equimolar ratio to the 36 kd protein, is a known regulatory subunit of the PP2A holoenzyme. Finally, the 36 kd PP2A catalytic subunit can be immunoprecipitated by anti-pp60c-src antisera only from cells expressing wild-type middle T. These results suggest that complex formation between PP2A and T antigens may be important for T antigen-mediated transformation.  相似文献   

15.
The glycogen-associated form of protein phosphatase-1 (PP-1G) is a heterodimer comprising a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit, the latter being phosphorylated by cAMP-dependent protein kinase at two serine residues (site 1 and site 2). Here the amino acid sequence surrounding site 2 has been determined and this phosphoserine shown to lie 19 residues C-terminal to site 1 in the primary structure. The sequence in this region is: (sequence; see text) At physiological ionic strength, phosphorylation of glycogen-bound PP-1G was found to release all the phosphatase activity from glycogen. The released activity was free C subunit, and not PP-1G, while the phospho-G subunit remained bound to glycogen. Dissociation reflected a greater than or equal to 4000-fold decrease in affinity of C subunit for G subunit and was readily reversed by dephosphorylation. Phosphorylation and dephosphorylation of site 2 was rate-limiting for dissociation and reassociation of C subunit. Release of C subunit was also induced by the binding of anti-site-1 Fab fragments to glycogen-bound PP-1G. At near physiological ionic strength, PP-1G and glycogen concentration, site 2 was autodephosphorylated by PP-1G with a t0.5 of 2.6 min at 30 degrees C, approximately 100-fold slower than the t0.5 for dephosphorylation of glycogen phosphorylase under the same conditions. Site 2 was a good substrate for all three type-2 phosphatases (2A, 2B and 2C) with t0.5 values less than those toward the alpha subunit of phosphorylase kinase. At the levels present in skeletal muscle, the type-2A and type-2B phosphatases are potentially capable of dephosphorylating site 2 in vivo within seconds. Site 1 was at least 10-fold less effective than site 2 as a substrate for all four phosphatases. In conjunction with information presented in the following paper in this issue of this journal, the results substantiate the hypothesis that PP-1 activity towards the glycogen-metabolising enzymes is regulated in vivo by reversible phosphorylation of a targetting subunit (G) that directs the C subunit to glycogen--protein particles. The efficient dephosphorylation of site 2 by the Ca2+/calmodulin-stimulated protein phosphatase (2B) provides a potential mechanism for regulating PP-1 activity in response to Ca2+, and represents an example of a protein phosphatase cascade.  相似文献   

16.
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling beta2 adrenergic receptors causes rapid reversible translocation of the G protein gamma11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the beta1 subunit suggests that gamma11 translocates as a betagamma complex. Pertussis toxin ADP ribosylation of the alphai subunit type or substitution of the C terminal domain of alphao with the corresponding region of alphas inhibits gamma11 translocation demonstrating that alpha subunit interaction with a receptor and its activation are requirements for the translocation. The rate of gamma11 translocation is sensitive to the rate of activation of the G protein alpha subunit. alpha subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of gamma11 translocation compared to alpha subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of gamma11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of gamma11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and alpha subunit types in a live cell.  相似文献   

17.
G protein-gated inwardly rectifying potassium (GIRK) channels are a family of K(+)-selective ion channels that slow the firing rate of neurons and cardiac myocytes. GIRK channels are directly bound and activated by the G protein G beta gamma subunit. As heterotetramers, they comprise the GIRK1 and the GIRK2, -3, or -4 subunits. Here we show that GIRK1 but not the GIRK4 subunit is phosphorylated when heterologously expressed. We found also that phosphatase PP2A dephosphorylation of a protein in the excised patch abrogates channel activation by G beta gamma. Experiments with the truncated molecule demonstrated that the GIRK1 C-terminal is critical for both channel phosphorylation and channel regulation by protein phosphorylation, but the critical phosphorylation sites were not located on the C terminus. These data provide evidence for a novel switch mechanism in which protein phosphorylation enables G beta gamma gating of the channel complex.  相似文献   

18.
A Mg-ATP-dependent protein phosphatase has been reconstituted from the catalytic subunit of protein phosphatase-1 and inhibitor-2, and consists of a 1:1 complex between these proteins. Activation of this enzyme by glycogen synthase kinase-3 and Mg-ATP results from the phosphorylation of inhibitor-2 on a threonine residue(s) and is accompanied by the dissociation of the complex. The results prove that protein phosphatase-1 and the Mg-ATP-dependent protein phosphatase contain the same catalytic subunit, and that they are interconvertible forms of the same enzyme.  相似文献   

19.
The glycogen-bound form of protein phosphatase-1 (PP-1G) was previously purified as a heterodimer composed of a 37-kDa catalytic (C) subunit and a proteolytically sensitive 103-kDa glycogen-binding (G) subunit [Str?hlfors, P., Hiraga, A. & Cohen, P. (1985) Eur. J. Biochem. 149, 295-303]. In this paper we demonstrate by a variety of criteria that the intact G subunit is a 161-kDa protein, and that the 103-kDa species (now termed G') is itself a product of proteolysis. A second phosphorylation site for cAMP-dependent protein kinase (termed site 2) was identified on the G subunit. The site 2 serine was phosphorylated at a comparable rate to site 1, and near stoichiometric phosphorylation could be achieved in the presence and absence of glycogen. Site 2 was dephosphorylated by PP-1 at a slow rate, whereas site 1 was resistant to autodephosphorylation. PP-1G, as well as the proteolytic activity responsible for degradation of the G subunit, remained tightly associated with glycogen-protein particles during washing with a variety of solvents. The PP-1G holoenzyme was released from glycogen-protein particles by dilution, with a dissociation half point corresponding to about 10 nM PP-1G. Binding experiments with purified PP-1G and glycogen indicated a bimolecular process with Kapp values corresponding to about 8 nM glycogen and 4 nM PP-1G. Binding was not significantly affected by increasing ionic strength to 0.5 M or variation of pH from 6 to 8. The results are consistent with a high-affinity glycogen-binding domain on the G subunit, and indicate that a physiological concentrations of phosphatase and glycogen, PP-1G should be almost entirely bound to glycogen.  相似文献   

20.
The protein phosphatase 2A (PP2A) and kinases such as germinal center kinase III (GCKIII) can interact with striatins to form a supramolecular complex called striatin-interacting phosphatase and kinase (STRIPAK) complex. Despite the fact that the STRIPAK complex regulates multiple cellular events, it remains only partially understood how this complex itself is assembled and regulated for differential biological functions. Our recent work revealed the activation mechanism of GCKIIIs by MO25, as well as how GCKIIIs heterodimerize with CCM3, a molecular bridge between GCKIII and striatins. Here we dissect the structural features of the coiled coil domain of striatin 3, a novel type of PP2A regulatory subunit that functions as a scaffold for the assembly of the STRIPAK complex. We have determined the crystal structure of a selenomethionine-labeled striatin 3 coiled coil domain, which shows it to assume a parallel dimeric but asymmetric conformation containing a large bend. This result combined with a number of biophysical analyses provide evidence that the coiled coil domain of striatin 3 and the PP2A A subunit form a stable core complex with a 2:2 stoichiometry. Structure-based mutational studies reveal that homodimerization of striatin 3 is essential for its interaction with PP2A and therefore assembly of the STRIPAK complex. Wild-type striatin 3 but not the mutants defective in PP2A binding strongly suppresses apoptosis of Jurkat cells induced by the GCKIII kinase MST3, most likely through a mechanism in which striatin recruits PP2A to negatively regulate the activation of MST3. Collectively, our work provides structural insights into the organization of the STRIPAK complex and will facilitate further functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号