首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protoplast isolation and regeneration in Streptomyces clavuligerus   总被引:10,自引:0,他引:10  
The regeneration of streptomycete protoplasts is a major step following genetic manipulations such as fusion and DNA-mediated transformation. Reports of studies on the regeneration of protoplasts from Streptomyces clavuligerus are limited and for this reason the experiments described in this paper were carried out. An investigation of protoplast formation and cytology was made to gain further insight into the loss of protoplast viability in osmotically stabilized support media. Protoplasts with the highest regeneration frequency were isolated from mycelium, grown in a two-stage culture system (without glycine), using lysozyme dissolved in a sucrose osmoticum containing 1% bovine serum albumin. The latter promoted improved protoplast viability. A systematic survey was made of the components of regeneration medium R5, previously used for S. clavuligerus, and other potentially advantageous components and conditions, in an attempt to raise the regeneration frequency of the protoplasts. An improved regeneration medium (R6) and protocol which supported higher and more consistent levels of regeneration of S. clavuligerus protoplasts resulted from these experiments. These improved procedures for protoplast isolation and regeneration proved to be suitable for other streptomycete species.  相似文献   

2.
A procedure for efficient transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts with plasmid DNA was developed. Transformation frequencies with S. fradiae protoplasts were strongly influenced by the temperatures for cell growth, protoplast formation, and protoplast regeneration. Transformation frequencies for both species were also influenced by the culture age before protoplast formation, the source and concentration of polyethylene glycol, the transformation-inducing agent, the concentration of protoplasts used in the transformation procedure, and the number of protoplasts added to regeneration plates. Transformation frequencies were substantially higher for both species when calf thymus DNA and protamine sulfate were added to the transformation mix. With S. fradiae, transformation frequencies were much lower with plasmid DNA prepared from other species than with the same plasmids prepared from S. fradiae, suggesting that S. fradiae expresses restriction and modification. With the modified transformation procedures using DNA prepared from homologous hosts, S. ambofaciens and S. fradiae are now transformed routinely at frequencies of 10(6) to 10(7) transformants per micrograms of plasmid DNA.  相似文献   

3.
Conditions for protoplast regeneration were examined for several strains of homofermentative lactobacilli and pediococci isolated from silage. Attempts to regenerate protoplasts using previously published agar regeneration media for lactobacilli were unsuccessful for most of the strains. Replacing or increasing colloidal substances in a medium containing raffinose and MgCl(2) as osmotic stabilizers enabled efficient regeneration of the protoplasts at a frequency of 10-99%. A medium containing gelatin, polyvinylpyrrolidone (PVP) and no agar was effective for Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus rhamnosus protoplasts. An agar medium containing PVP (PVP medium) was effective for Pediococcus sp. protoplasts, and addition of agarose to the PVP medium enabled regeneration of Lactobacillus casei protoplasts. A medium containing calcium alginate gel and no agar was effective for Lactobacillus curvatus protoplasts. The type of colloidal substance required for protoplast regeneration varied from species to species. This result suggested that several kinds of media may be necessary to regenerate protoplasts for all the genera of lactobacilli and pediococci.  相似文献   

4.
Early stages of Penicillium chrysogenum 51 and Streptomyces lividans 66 protoplast regeneration on solid media were studied microscopically under conditions of microcompartments. It was shown that at the early regeneration stages there were both rapid reversion into the mycelial form and a retarded one. In P. chrysogenum retarded regeneration resulted in formation of hypha-like structures or protoplast breaking into fragments of various sizes. Some of the fragments restored the cell walls and mycelial organization whereas the others lysed. As a result of the breaking and compartmentalization of the viable areas one protoplasts formed several centers of P. chrysogenum colony reversion. Retarded regeneration of protoplasts in S. lividans 66 resulted in their growth and multiplication in the protoplast-like L-form. On media with penicillin, glycine and horse serum there were isolated colonies of S. lividans L-forms subject to passages or reversion depending on the medium composition.  相似文献   

5.
Abstract Protoplast fusion was shown to produce high frequencies of recombinant progeny in intraspecies crosses with auxotrophic mutants of Streptomyces canescens, Streptomyces griseus and Streptomyces limosus . The fused protoplasts were regenerated on non-selective media and the progeny spores subsequently analysed on selective media to allow detection of all possible genotypes. Prototrophic recombinants arose with frequencies of between 1% and 8%. All 4 possible genotypes were recovered in a series of 2-factor crosses and 6 of the 8 possible genotypes were detected in a 3-factor cross. In spite of attempts to equalise the ratios of parental protoplasts in the fusion mixture, there were noticeable deviations from unity in the ratios of parental genotypes in the progeny.  相似文献   

6.
Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and mutanolysin (10 μg/ml). Maximum protoplast regeneration was obtained on MRS medium with sucrose (0.5 M) as an osmotic stabilizer. The regeneration medium was also applicable to other species of lactobacilli as well. This is, to our knowledge, the first report on protoplast formation and efficient regeneration in case of L. delbrueckii.  相似文献   

7.
The protoplasts of three Streptomyces species and their regenerative ability were studied using light microscopy. When Streptomyces lividans and S. erythraeus protoplasts are cultivated on regeneration media, their regeneration is not synchronous during the first day; some protoplasts revert to yield the mycelial form and also L-forms of these cultures are produced. If the protoplasts are transferred to a medium inducing L-forms, they grow and multiply for a long time with the production of L-form colonies. This process is maintained if S. lividans L-form cells are passaged on the medium inducing L-forms, but the protoplasts revert to yield the mycelial form on the regeneration medium.  相似文献   

8.
Production and Regeneration of Lactobacillus casei Protoplasts   总被引:6,自引:11,他引:6       下载免费PDF全文
Methods for the production and regeneration of Lactobacillus casei protoplasts are described. Protoplasts of L. casei strains were obtained by treatment with mutanolysin or with mutanolysin and lysozyme together in a protoplast formation buffer containing 0.02 M HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) (pH 7.0), 1 mM MgCl2, 0.5% gelatin, and 0.3 M raffinose. Cells were regenerated on a complex medium supplemented with bovine serum albumin, MgCl2, CaCl2, gelatin, and raffinose. Lengthy digestion with lytic enzymes inhibited the capacity of protoplasts to regenerate. The optimum conditions of protoplast formation varied from strain to strain. Using predetermined optimal conditions it was possible to prepare protoplasts of several L. casei strains and regenerate them with 10 to 40% efficiency. The methods were applicable to other species of lactobacilli as well.  相似文献   

9.
The conditions for optimal formation and regeneration of protoplasts of Streptomyces clavuligerus were established. The optimal temperature for regeneration of protoplasts and for transformation was 26 degrees C in three different regeneration media. The best efficiency of transformation was obtained with 40% polyethylene glycol 1000. The efficiencies of regeneration and transformation increased greatly when protoplasts were obtained from cultures in the early stationary phase of growth. The number of transformants per assay increased linearly with rising concentrations of protoplasts. However, the number of transformants per protoplast decreased at concentrations of protoplasts above 1.5 X 10(9). The total number of transformants rose linearly at increasing plasmid DNA concentrations, but the number of the transformants per microgram of DNA became constant at concentrations above 1 microgram of DNA. Transformation frequencies as high as 5 X 10(5) transformants per microgram of DNA were obtained when plasmid pIJ702 was isolated from S. clavuligerus but not when isolated from Streptomyces lividans.  相似文献   

10.
The conditions for optimal formation and regeneration of protoplasts of Streptomyces clavuligerus were established. The optimal temperature for regeneration of protoplasts and for transformation was 26 degrees C in three different regeneration media. The best efficiency of transformation was obtained with 40% polyethylene glycol 1000. The efficiencies of regeneration and transformation increased greatly when protoplasts were obtained from cultures in the early stationary phase of growth. The number of transformants per assay increased linearly with rising concentrations of protoplasts. However, the number of transformants per protoplast decreased at concentrations of protoplasts above 1.5 X 10(9). The total number of transformants rose linearly at increasing plasmid DNA concentrations, but the number of the transformants per microgram of DNA became constant at concentrations above 1 microgram of DNA. Transformation frequencies as high as 5 X 10(5) transformants per microgram of DNA were obtained when plasmid pIJ702 was isolated from S. clavuligerus but not when isolated from Streptomyces lividans.  相似文献   

11.
林肯链霉菌双亲灭活原生质体融合的研究   总被引:14,自引:0,他引:14  
分别以紫外线、热灭活林肯链霉菌 94 7和 95 0 2原生质体 ,然后进行灭活双亲的原生质体融合 ,从 1 6株融合子筛选到林肯霉素高产株。用双亲的互补营养缺陷型对林肯链霉菌原生质体的制备、融合、再生的部分条件进行了研究。发现含 0 .4 %Gly和 34 %蔗糖的SM培养基最适于实验菌株原生质体的制备、再生。聚乙二醇 (PEG)分子量对原生质体融合影响不大 ,其在P缓冲液中的浓度却很重要。含 5 0 %PEG的P缓冲液最有利于原生质体融合  相似文献   

12.
Streptomyces peucetius and Streptomyces strain C5, producers or anthracycline antibiotics, were converted to protoplasts from vegetatively growing mycelia. Conditions are described for maximal protoplast formation (greater than 99%) and for regeneration frequencies of up to 13%. Streptomycete plasmids pIJ61, pIJ702, and pIJ922, from the replicons SLP1, pIJ101, and SCP2, respectively, were isolated from Streptomyces lividans 66 and successfully introduced into S. peucetius and Streptomyces strain C5 by polyethylene glycol-mediated protoplast transformation. Frequencies of up to 10(6) transformations X microgram of plasmid DNA-1 were achieved by these procedures. Analyses showed that the two anthracycline-producing strains can stably harbor the plasmids without deletion of plasmid sequences or loss of the plasmids for several transfers through selective media. Fragments of DNA from S. peucetius ligated into pIJ702 and introduced into Streptomyces strain C5 were stable after several transfers through selective media. Both anthracycline producers also were sensitive to infection and transfection by actinophages KC401 and KC515, clear plaque derivatives of bacteriophage phi C31. Optimal conditions were determined for the transfection of S. peucetius and Streptomyces strain C5 protoplasts with phi C31 KC401 and KC515 DNA with liposome-assisted, polyethylene glycol-mediated protoplast transfection.  相似文献   

13.
Transformation and transfection of anthracycline-producing streptomycetes   总被引:3,自引:0,他引:3  
Streptomyces peucetius and Streptomyces strain C5, producers or anthracycline antibiotics, were converted to protoplasts from vegetatively growing mycelia. Conditions are described for maximal protoplast formation (greater than 99%) and for regeneration frequencies of up to 13%. Streptomycete plasmids pIJ61, pIJ702, and pIJ922, from the replicons SLP1, pIJ101, and SCP2, respectively, were isolated from Streptomyces lividans 66 and successfully introduced into S. peucetius and Streptomyces strain C5 by polyethylene glycol-mediated protoplast transformation. Frequencies of up to 10(6) transformations X microgram of plasmid DNA-1 were achieved by these procedures. Analyses showed that the two anthracycline-producing strains can stably harbor the plasmids without deletion of plasmid sequences or loss of the plasmids for several transfers through selective media. Fragments of DNA from S. peucetius ligated into pIJ702 and introduced into Streptomyces strain C5 were stable after several transfers through selective media. Both anthracycline producers also were sensitive to infection and transfection by actinophages KC401 and KC515, clear plaque derivatives of bacteriophage phi C31. Optimal conditions were determined for the transfection of S. peucetius and Streptomyces strain C5 protoplasts with phi C31 KC401 and KC515 DNA with liposome-assisted, polyethylene glycol-mediated protoplast transfection.  相似文献   

14.
Conditions were established for the regeneration of protoplasts of Streptomyces parvulus and Streptomyces antibioticus to the mycelial form. Regeneration was accomplished with a hypertonic medium that contained sucrose, CaCl2, MgCl2, and low levels of phosphate. High-frequency fusion of protoplasts derived from auxotrophic strains of S. parvulus or S. antibioticus was induced by polyethylene glycol 4,000 (42%, wt/vol). The frequency of genetic transfer by the fusogenic procedure varied with the auxotrophic strains examined. Fusion with auxotrophic strains of S. parvulus resulted in the formation of true prototrophic recombinants. Similar studies with S. antibioticus revealed that both stable prototrophic recombinants and heterokaryons were formed.  相似文献   

15.
The effect of the bacteriolytic enzyme preparation, lysoamidase, on Staphylococcus aureus 209P cells was studied. The protoplast formation was examined by spectrophotometric, biochemical and electron microscopic methods. Optimal conditions for isolation of S. aureus protoplasts were chosen. The susceptibility of S. aureus cells to lysoamidase depended on the culture age: the maximum effect was observed in the logarithmic growth phase. The protoplast yield was 80% when 1 M sucrose was used as an osmotic stabilizer. Lysoamidase caused local disruptures of the staphylococcus cell walls, which resulted in the formation of osmotically fragile spheroplasts and the release of protoplasts into the medium. The protoplasts obtained could retain 85-90% of the respiration activity and were able of cell wall regeneration.  相似文献   

16.
Conditions for the regeneration of cells from protoplasts of Streptomyces chrysomallus, a producer of the peptide antibiotic actinomycin, are described. Regeneration of fusion products was most efficient at 27-30 degrees C on regeneration R2 medium (Okanishi et al., 1974) containing 0.25 M-sucrose. The addition of phosphate (150-300 mg 1(-1) to the medium and incubation at 23 degrees C proved to be optimal for the regeneration of individual strains. Highest recombination frequencies after protoplast fusion were obtained by fusing protoplasts in the presence of 45% (w/v) polyethylene glycol 6000. With strains that produce no, or little antibiotic, protoplasts must be present in excess in fusion mixtures in order to overcome inhibition of regeneration by the antibiotic-producing partner.  相似文献   

17.
A general procedure for manipulating protoplasts of three Streptomyces rimosus strains was developed. More than 50% regeneration efficiency was obtained by optimizing the osmotic stabilizer concentrations and modifying the plating procedure. Preparation and regeneration of protoplasts were studied by both phase-contrast and electron microscopy. After cell wall degradation with lysozyme, protoplasts about 1,000 to 1,500 nm in diameter appeared. The reversion process exhibited normal and aberrant regeneration of protoplasts to hyphae and to spherical cells, respectively. Spherical cells contained no alpha, epsilon-ll-diaminopimelic acid and were colorless or red after Gram staining. They showed consistent stability during at least five subsequent subcultivations. However, the omission of glycine from the precultivation medium reduced the unusual process of regeneration almost completely. After normal protoplast regeneration, the production of oxytetracycline by single isolates was not affected.  相似文献   

18.
Polyethylene glycol-assisted transfection of Streptomyces protoplasts   总被引:10,自引:4,他引:6       下载免费PDF全文
In the presence of polyethylene glycol (concentration optimum 20%), protoplasts of appropriate Streptomyces strains could be transfected by deoxyribonucleic acid (DNA) of five temperate phages (phi C31, VP5, R4, phi 448, and S14) belonging to four different immunity groups. Quantitation of transfection was made possible by plating the transfection mixture with excess uninfected protoplasts in soft agar overlays on protoplast regeneration medium so that plaques were easily detected. Optimum frequencies of transfection in the ranges of 10(-6)/DNA molecule and 10(-5)/viable protoplast were invariably obtained. It appeared that single DNA molecules initiated transfection events, and that the conformation of the DNA (i.e., circular or linear) was not important. Inhibition of transfection by ethylenediaminetetraacetic acid suggested that divalent cations were also observed. A minor subpopulation of protoplasts appeared to be particularly sensitive to transfection (i.e., "competent") in some DNA-host combinations. In such cases the size of this subpopulation was the major limiting factor in obtaining high transfection frequencies. The same protoplast  相似文献   

19.
Summary Fusion and regeneration of protoplasts ofNocardia asteroides strains ATCC 3318, IMRU W3599 and HIK B971 have been used to study genetic recombination in this species. Protoplasts were produced by treatment with lysozyme, following incubation with glycine. Mutants of ATCC 3318 were grown in peptone yeast extract medium at 32°C prior to protoplast production to maximize protoplast frequency, whereas mutants of IMRU W3599 and HIK B971 were grown in trypticase-soy broth. Glycine concentrations favoring protoplast formation varied from 1.5% to 5% depending on strain. For all strains, protoplast formation was complete 1 h after addition of 5 mg/ml lysozyme. Protoplasts were fused by addition of 50% polyethylene glycol-1000. In general, 25% of the protoplasts could be regenerated. The incidence of recombinant recovery was increased up to 750-fold. The distribution of recombinant phenotypes in matings was similar for protoplast fusion and conventional crosses.  相似文献   

20.
Optimal conditions for protoplasting of the Streptomyces rimosus industrial strain No. 1 producing oxytetracycline were developed. Observation of the early stages of the protoplast regeneration in microchambers showed that there were two regeneration types: normal and anomalous. The latter was likely defined by the glycine effect on cell wall synthesis. It was accompanied by the stage in which the protoplasts had the form of multiplying protoplast-like cells. The protoplasting of the S. rimosus culture producing oxytetracycline resulted in an increase in the variability of an antibiotic producing property and the frequency of low active variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号