首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Bacillus subtilis most peroxide-inducible oxidative stress genes are regulated by a metal-dependent repressor, PerR. PerR is a dimeric, Zn2+-containing metalloprotein with a regulatory metal-binding site that binds Fe2+ (PerR:Zn,Fe) or Mn2+ (PerR: Zn,Mn). Reaction of PerR:Zn,Fe with low levels of hydrogen peroxide (H2O2) leads to oxidation of two His residues thereby leading to derepression. When bound to Mn2+, the resulting PerR:Zn,Mn is much less sensitive to oxidative inactivation. Here we demonstrate that the structural Zn2+ is coordinated in a highly stable, intrasubunit Cys4:Zn2+ site. Oxidation of this Cys4:Zn2+ site by H2O2 leads to the formation of intrasubunit disulfide bonds. The rate of oxidation is too slow to account for induction of the peroxide stress response by micromolar levels of H2O2 but could contribute to induction under severe oxidative stress conditions. In vivo studies demonstrated that inactivation of PerR:Zn,Mn required 10 mM H2O2, a level at least 1000 times greater than that needed for inactivation of PerR:Zn,Fe. Surprisingly even under these severe oxidation conditions there was little if any detectable oxidation of cysteine residues in vivo: derepression was correlated with oxidation of the regulatory site. Because oxidation at this site required bound Fe2+ in vitro, we suggest that treatment of cells with 10 mM H2O2 released sufficient Fe2+ into the cytosol to effect a transition of PerR from the PerR:Zn,Mn form to the peroxide-sensitive PerR: Zn,Fe form. This model is supported by metal ion affinity measurements demonstrating that PerR bound Fe2+ with higher affinity than Mn2+.  相似文献   

2.
Ma Z  Lee JW  Helmann JD 《Nucleic acids research》2011,39(12):5036-5044
Bacillus subtilis PerR is a Fur family repressor that senses hydrogen peroxide by metal-catalyzed oxidation. PerR contains a structural Zn(II) ion (Site 1) and a regulatory metal binding site (Site 2) that, upon association with either Mn(II) or Fe(II), allosterically activates DNA binding. In addition, a third less conserved metal binding site (Site 3) is present near the dimer interface in several crystal structures of homologous Fur family proteins. Here, we show that PerR proteins with substitutions of putative Site 3 residues (Y92A, E114A and H128A) are functional as repressors, but are unexpectedly compromised in their ability to sense H(2)O(2). Consistently, these mutants utilize Mn(II) but not Fe(II) as a co-repressor in vivo. Metal titrations failed to identify a third binding site in PerR, and inspection of the PerR structure suggests that these residues instead constitute a hydrogen binding network that modulates the architecture, and consequently the metal selectivity, of Site 2. PerR H128A binds DNA with high affinity, but has a significantly reduced affinity for Fe(II), and to a lesser extent for Mn(II). The ability of PerR H128A to bind Fe(II) in vivo and to thereby respond efficiently to H(2)O(2) was restored in a fur mutant strain with elevated cytosolic iron concentration.  相似文献   

3.
4.
5.
In Bacillus subtilis, hydrogen peroxide (H2O2) induces expression of the PerR regulon including catalase (KatA), alkyl hydroperoxide reductase and the DNA-binding protein MrgA. We have identified the P-type metal-transporting ATPase ZosA (formerly YkvW) as an additional member of the perR regulon. Expression of zosA is induced by H2O2 and repressed by the PerR metalloregulatory protein, which binds to two Per boxes in the promoter region. Physiological studies implicate ZosA in Zn(II) uptake. ZosA functions together with two Zur-regulated uptake systems and one known efflux system to maintain Zn(II) homeostasis. ZosA is the major pathway for zinc uptake in cells growing with micromolar levels of Zn(II) that are known to repress the two Zur-regulated transporters. A perR mutant is sensitive to high levels of zinc, and this sensitivity is partially suppressed by a zosA mutation. ZosA is important for resistance to both H2O2 and the thiol-oxidizing agent diamide. This suggests that increased intracellular Zn(II) may protect thiols from oxidation. In contrast, catalase is critical for H2O2 resistance but does not contribute significantly to diamide resistance. Growth of cells with elevated zinc significantly increases resistance to high concentrations of H2O2, and this effect requires ZosA. Our results indicate that peroxide stress leads to the upregulation of a dedicated Zn(II) uptake system that plays an important role in H2O2 and disulphide stress resistance.  相似文献   

6.
Fur (f erric u ptake r egulator) is the master regulator of iron homeostasis in many bacteria, but how it responds specifically to Fe(II) in vivo is not clear. Biochemical analyses of Bacillus subtilis Fur (BsFur) reveal that in addition to Fe(II), both Zn(II) and Mn(II) allosterically activate BsFur–DNA binding. Dimeric BsFur co‐purifies with site 1 structural Zn(II) (Fur2Zn2) and can bind four additional Zn(II) or Mn(II) ions per dimer. Metal ion binding at previously described site 3 occurs with highest affinity, but the Fur2Zn2:Me2 form has only a modest increase in DNA binding affinity (approximately sevenfold). Metallation of site 2 (Fur2Zn2:Me4) leads to a ~ 150‐fold further enhancement in DNA binding affinity. Fe(II) binding studies indicate that BsFur buffers the intracellular Fe(II) concentration at ~ 1 μM. Both Mn(II) and Zn(II) are normally buffered at levels insufficient for metallation of BsFur site 2, thereby accounting for the lack of cross‐talk observed in vivo. However, in a perR mutant, where the BsFur concentration is elevated, BsFur may now use Mn(II) as a co‐repressor and inappropriately repress iron uptake. Since PerR repression of fur is enhanced by Mn(II), and antagonized by Fe(II), PerR may co‐regulate Fe(II) homeostasis by modulating BsFur levels in response to the Mn(II)/Fe(II) ratio.  相似文献   

7.
8.
Dps (DNA protection during starvation) proteins, mini-ferritins in the ferritin superfamily, catalyze Fe(2+)/H(2)O(2)/O(2) reactions and make minerals inside protein nanocages to minimize radical oxygen-chemistry (metal/osmotic/temperature/nutrient/oxidant) and sometimes to confer virulence. Paired Dps proteins in Bacillus, rare in other bacteria, have 60% sequence identity. To explore functional differences in paired Bacilli Dps protein, we measured ferroxidase activity and DNA protection (hydroxyl radical) for Dps protein dodecamers from Bacillus anthracis (Ba) since crystal structures and iron mineralization (iron-stain) were known. The self-assembled (200 kDa) Ba Dps1 (Dlp-1) and Ba Dps2 (Dlp-2) proteins had similar Fe(2+)/O(2) kinetics, with space for minerals of 500 iron atoms/protein, and protected DNA. The reactions with Fe(2+) were novel in several ways: 1) Ba Dps2 reactions (Fe(2+)/H(2)O(2)) proceeded via an A(650 nm) intermediate, with similar rates to maxi-ferritins (Fe(2+)/O(2)), indicating a new Dps protein reaction pathway, 2) Ba Dps2 reactions (Fe(2+)/O(2) versus Fe(2+)/O(2) + H(2)O(2)) differed 3-fold contrasting with Escherichia coli Dps reactions, with 100-fold differences, and 3) Ba Dps1, inert in Fe(2+)/H(2)O(2) catalysis, inhibited protein-independent Fe(2+)/H(2)O(2) reactions. Sequence similarities between Ba Dps1 and Bacillus subtilis DpsA (Dps1), which is regulated by general stress factor (SigmaB) and Fur, and between Ba Dps2 and B. subtilis MrgA, which is regulated by H(2)O(2) (PerR), suggest the function of Ba Dps1 is iron sequestration and the function of Ba Dps2 is H(2)O(2) destruction, important in host/pathogen interactions. Destruction of H(2)O(2) by Ba Dps2 proceeds via an unknown mechanism with an intermediate similar spectrally (A(650 nm)) and kinetically to the maxi-ferritin diferric peroxo complex.  相似文献   

9.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and M?ssbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and M?ssbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.  相似文献   

10.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

11.
Jiang W  Xie J  Nørgaard H  Bollinger JM  Krebs C 《Biochemistry》2008,47(15):4477-4483
We recently showed that the class Ic ribonucleotide reductase (RNR) from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor in its R2 subunit to initiate catalysis [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. The Mn (IV) site of the novel cofactor functionally replaces the tyrosyl radical used by conventional class I RNRs to initiate substrate radical production. As a first step in evaluating the hypothesis that the use of the alternative cofactor could make the RNR more robust to reactive oxygen and nitrogen species [RO(N)S] produced by the host's immune system [H?gbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gr?slund, A., and Nordlund, P. (2004) Science 305, 245-248], we have examined the reactivities of three stable redox states of the Mn/Fe cluster (Mn (II)/Fe (II), Mn (III)/Fe (III), and Mn (IV)/Fe (III)) toward hydrogen peroxide. Not only is the activity of the Mn (IV)/Fe (III)-R2 intermediate stable to prolonged (>1 h) incubations with as much as 5 mM H 2O 2, but both the fully reduced (Mn (II)/Fe (II)) and one-electron-reduced (Mn (III)/Fe (III)) forms of the protein are also efficiently activated by H 2O 2. The Mn (III)/Fe (III)-R2 species reacts with a second-order rate constant of 8 +/- 1 M (-1) s (-1) to yield the Mn (IV)/Fe (IV)-R2 intermediate previously observed in the reaction of Mn (II)/Fe (II)-R2 with O 2 [Jiang, W., Hoffart, L. M., Krebs, C., and Bollinger, J. M., Jr. (2007) Biochemistry 46, 8709-8716]. As previously observed, the intermediate decays by reduction of the Fe site to the active Mn (IV)/Fe (III)-R2 complex. The reaction of the Mn (II)/Fe (II)-R2 species with H 2O 2 proceeds in three resolved steps: sequential oxidation to Mn (III)/Fe (III)-R2 ( k = 1.7 +/- 0.3 mM (-1) s (-1)) and Mn (IV)/Fe (IV)-R2, followed by decay of the intermediate to the active Mn (IV)/Fe (III)-R2 product. The efficient reaction of both reduced forms with H 2O 2 contrasts with previous observations on the conventional class I RNR from Escherichia coli, which is efficiently converted from the fully reduced (Fe 2 (II/II)) to the "met" (Fe 2 (III/III)) form [Gerez, C., and Fontecave, M. (1992) Biochemistry 31, 780-786] but is then only very inefficiently converted from the met to the active (Fe 2 (III/III)-Y (*)) form [Sahlin, M., Sj?berg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990) Biochem. Biophys. Res. Commun. 167, 813-818].  相似文献   

12.
The reaction of hemoglobin (Hb) with hydrogen peroxide (H2O2) leads to fluorescent product and heme degradation. We applied capillary electrophoresis-chemiluminescence (CE-CL) detection to monitor the course of Hb reacting with H2O2. Hb and released free iron ion (Fe3+) were detected based on their enhancement effects on CL of the luminol-H2O2 system. In this study, we discovered an intermediate of this reaction which intensely enhances the luminol-H2O2 CL system. The ratio of max CL signals of Fe3+, Hb and this intermediate is circa 1:10:60.  相似文献   

13.
14.
15.
1. Metal ion-chelating agents such as EDTA, o-phenanthroline or desferrioxamine inhibit lipid peroxide formation when rat liver microsomes prepared from homogenates made in pure sucrose are incubated with ascorbate or NADPH. 2. Microsomes treated with metal ion-chelating agents do not form peroxide on incubation unless inorganic iron (Fe(2+) or Fe(3+)) in a low concentration is added subsequently. No other metal ion can replace inorganic iron adequately. 3. Microsomes prepared from sucrose homogenates containing EDTA (1mm) do not form lipid peroxide on incubation with ascorbate or NADPH unless Fe(2+) is added. Washing the microsomes with sucrose after preparation restores most of the capacity to form lipid peroxide. 4. Lipid peroxide formation in microsomes prepared from sucrose is stimulated to a small extent by inorganic iron but to a greater extent if adenine nucleotides, containing iron compounds as a contaminant, are added. 5. The iron contained in normal microsome preparations exists in haem and in non-haem forms. One non-haem component in which the iron may be linked to phosphate is considered to be essential for both the ascorbate system and NADPH system that catalyse lipid peroxidation in microsomes.  相似文献   

16.
Autooxidation of reduced glutathione in 50 mM buffer at pH 7.9 is indetectably slow in the presence of 1 mM DETAPAC, EDTA, TET, or tripyridine, but passing buffer through Chelex resin was insufficient to remove traces of catalytically active metals. Production of hydrogen peroxide during glutathione autooxidation was catalyzed by traces of Fe+2 or Cu+2, and to a much lesser extent by Cu+1 and Ni+2, but not to a detectable extent by Na+1, K+1, Fe+3, Al+3, Cd+2, Zn+2, Ca+2, Mg+2, Mn+2, or Hg+2. Cysteine was a much better precursor for hydrogen peroxide production than were cysteine sulfinic or sulfonic acids. The chelators EGTA, NTA, bipyridine, dimethyl glyoxime, salicylate, and Desferal were ineffective at preventing autooxidation. EDDA and 8-hydroxyquinoline were partially effective. Catalase could completely prevent the accumulation of detectable H2O2, but superoxide dismutase was only slightly inhibitory. Hydroxyl radical and singlet oxygen quenching agents (mannitol and histidine) stimulated. A mechanism for the production of H2O2 during trace metal catalyzed oxidation of glutathione is proposed, involving glutathione-complexed metal and dissolved oxygen. Although a radical intermediate can not be ruled out, no radical initiated chain reaction is necessary.  相似文献   

17.
Reactions of human oxyhemoglobin A with iron(II) compounds have been investigated. Human oxyhemoglobin (HbO2) reacts with aquopentacyanoferrate(II), Fe(II)(CN)5H2O3-, to yield hydrogen peroxide, aquomethemoglobin and Fe(III)(CN)5H2O2-. The reaction follows a second order rate law, first order in the pentacyanide and in HbO2. Since reaction rates are lower in the presence of catalase, the H2O2 produced must promote metHb formation in reactions independent of pentacyanide. Changes in concentrations of effectors (e.g. H+, inositol hexaphosphate, Cl-, and Zn2+), alkylation of beta-93 cysteine with N-ethylmaleimide, and substitution at distal histidine (as in Hb Zurich with beta-63 His----Arg) in each case can markedly affect pentacyanide reaction rates demonstrating a fine control of rates by protein structure. Hexacyanoferrate(II) (ferrocyanide) reacts with HbO2 to produce cyano-metHb as well as aquo-metHb but the reaction with the hexacyanide is much slower than with the aquopentacyanide. Iron(II) EDTA converts HbO2 to deoxy-Hb with no evidence for formation of metHb as an intermediate. These findings support a mechanism in which the pentacyanide anion reacts directly with coordinated dioxygen. One-electron transfers to O2 from both pentacyanide iron(II) and heme iron(II) result in the formation of a mu-peroxo intermediate, HbFe(III)-O-O-Fe(III) (CN)5(3-). Hydrolysis of this intermediate yields metHb . H2O, H2O2, and FeIII(CN)5H2O2-. The reaction of HbO2 with Fe(CN)6(4-) must follow an outer sphere electron transfer mechanism. However, the very slow rate that is seen with Fe(CN)6(4-) could arise entirely from the pentacyanide produced from loss of one cyanide ligand from the hexacyanide. Fe(II)EDTA reacts rapidly with free O2 in solution but can not interact directly with the heme-bound O2 of HbAO2. The dynamic character of the O2 binding sites apparently permits access of the Fe2+ of the pentacyanide to coordinated dioxygen but the protein structure is not sufficiently flexible to allow the larger Fe2+EDTA molecule to react with bound O2. It is necessary for maintenance of the oxygen transport function of the red cell for reductants such as the methemoglobin reductase system, glutathione, and ascorbate to be able to reduce metHb to deoxy-Hb. It is also important for these reductants to be unable to donate an electron to HbO2 to yield H2O2 and metHb. Thus, a mechanistic requirement for the delivery of one-electron directly to the dioxygen ligand, if peroxide is to be produced, enables the protein to protect the oxygenated species from those electron donors normally present in the cell by denying these reductants steric access to coordinated O2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Previously, we showed the presence in radish (Raphanus sativus L.) plasmalemma vesicles of an NAD(P)H oxidase, active at pH 4.5-5.0, which elicits the formation of anion superoxide (Vianello and Macrí (1989) Biochim. Biophys. Acta 980, 202-208). In this work, we studied the role of hydrogen peroxide and iron ions upon this oxidase activity. NADH oxidation was stimulated by ferrous ions and, to a lesser extent, by ferric ions. Salicylate and benzoate, two known hydroxyl radical scavengers, inhibited both basal and iron-stimulated NADH oxidase activity. The iron chelators EDTA (ethylenediaminetetraacetic acid) and DFA (deferoxamine melysate) at high concentrations (2 mM) inhibited the NADH oxidation, whereas they were ineffective at lower concentrations (80 microM); the subsequent addition of ferrous ions caused a rapid and limited increase of oxygen consumption which later ceased. Hydrogen peroxide was not detected during NADH oxidation but, in the presence of salicylate, its formation was found in significant amounts. NADH oxidase activity was also associated to a Fe2+ oxidation which was only partially inhibited by salicylate. Ferrous ion oxidation was partially inhibited by catalase and prevented by superoxide dismutase, while ferric ion reduction was abolished by catalase and unaffected by superoxide dismutase. These results show that during NADH oxidation iron ions undergo oxidoreduction and that hydrogen peroxide is produced and rapidly consumed. As previously suggested, this oxidation appears linked to the univalent oxidoreduction of iron ions by a reduced flavoprotein of radish plasmalemma which is then converted to a radical form. The latter, reacting with oxygen generates the superoxide anion which dismutases to H2O2. Hydrogen peroxide, through a Fenton's reaction, may react with Fe2+ to produce hydroxyl radicals, or with Fe3+ to generate the superoxide anion.  相似文献   

19.
In a wide variety of biological systems non-enzyme complexes of the metals copper (Cu) and iron (Fe) have been shown to enhance oxygen radical damage by increasing the production of an oxidative species generally believed to be the hydroxyl free radical (.OH) via "Fenton" and possibly "Haber-Weiss" type reactions. However, the behavior of the chemically and biologically similar transition metal manganese (Mn) with .OH is unknown. Unlike Fe and Cu, inorganic complexes of Mn are known to exist in high concentrations in certain cells. Three different oxygen free radical generating systems and four .OH detection methods were used to investigate the activity of biologically relevant inorganic Mn complexes. These complexes were compared to compounds reported to scavenge and generate .OH. The direct and indirect effects of Mn on the .OH flux were compared by attempting to distinguish the effects of hydrogen peroxide (H2O2), superoxide (O2-), and .OH through the use of selective scavengers and generators. Mn-EDTA and biologically relevant Mn-pyrophosphates and polyphosphates, in contrast to Fe-EDTA, do not generate .OH in these systems. The results suggest that Mn in various forms does, indeed, inhibit oxy-radical damage mediated by .OH, but only if the .OH production is dependent on the presence of O2- or H2O2. Thus, with .OH, as with O2- and H2O2, Mn complexes appear to behave in a fundamentally different fashion from Cu and Fe.  相似文献   

20.
Regulation of oxidative stress responses by the peroxide stress regulator (PerR) is critical for the in vivo fitness and virulence of group A Streptococcus. To elucidate the molecular mechanism of DNA binding, peroxide sensing, and gene regulation by PerR, we performed biochemical and structural characterization of PerR. Sequence-specific DNA binding by PerR does not require regulatory metal occupancy. However, metal binding promotes higher affinity PerR-DNA interactions. PerR metallated with iron directly senses peroxide stress and dissociates from operator sequences. The crystal structure revealed that PerR exists as a homodimer with two metal-binding sites per subunit as follows: a structural zinc site and a regulatory metal site that is occupied in the crystals by nickel. The regulatory metal-binding site in PerR involves a previously unobserved HXH motif located in its unique N-terminal extension. Mutational analysis of the regulatory site showed that the PerR metal ligands are involved in regulatory metal binding, and integrity of this site is critical for group A Streptococcus virulence. Interestingly, the metal-binding HXH motif is not present in the structurally characterized members of ferric uptake regulator (Fur) family but is fully conserved among PerR from the genus Streptococcus. Thus, it is likely that the PerR orthologs from streptococci share a common mechanism of metal binding, peroxide sensing, and gene regulation that is different from that of well characterized PerR from Bacillus subtilis. Together, our findings provide key insights into the peroxide sensing and regulation of the oxidative stress-adaptive responses by the streptococcal subfamily of PerR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号