首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5).  相似文献   

2.
Illegitimate recombination is the most frequent mechanism for chromosomal rearrangements in mammalian cells, yet little is known about this process. Most of the studies to date have looked at the sequences present at illegitimate junctions. These revealed the presence of recurrent DNA motifs, none of which was consistently found. We have undertaken to determine if intrinsic DNA structures such as bent DNA elements could be a major determinant in chromosomal illegitimate recombination. Using a two dimensional electrophoretic assay we found that eight out of eight junctions, resulting from various types of chromosomal rearrangements, had migration behaviour characteristic of DNA containing intrinsically bent DNA elements. In all cases, these occurred within one kilobase of the junctions, and in most cases could be found in both participating DNA segments. We also found that these bent DNA elements were present before the recombination event. When we analysed the frequency of intrinsically bent DNA elements in random chromosomal fragments, we found it to be about one per 11 kilobases. Thus these results suggest that bent DNA is associated with chromosomal illegitimate recombination.  相似文献   

3.
Mutations in the HPRT gene cause a spectrum of diseases that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. The extreme phenotype is termed Lesch-Nyhan syndrome. In 271 cases in which the germinal HPRT mutation has been characterized, 218 different mutations have been found. Of these, 34 (13%) are large- (macro-) deletions of one exon or greater and four (2%) are partial gene duplications. The deletion breakpoint junctions have been defined for only three of the 34 macro-deletions. The molecular basis of two of the four duplications has been defined. We report here the breakpoint junctions for three new deletion mutations, encompassing exons 4-8 (20033bp), exons 4 and 5 (13307bp) and exons 5 and 6 (9454bp), respectively. The deletion breakpoints were defined by a combination of long polymerase chain reaction (PCR) amplifications, and conventional PCR and DNA sequencing. All three deletions are the result of non-homologous recombinations. A fourth mutation, a duplication of exons 2 and 3, is the result of an Alu-mediated homologous recombination between identical 19bp sequences in introns 3 and 1. In toto, two of three germinal HPRT duplication mutations appear to have been caused by Alu-mediated homologous recombination, while only one of six deletion mutations appears to have resulted from this type of recombination mechanism. The other five deletion mutations resulted from non-homologous recombination. With this admittedly limited number of characterized macro-mutations, Alu-mediated unequal homologous recombinations account for at least 8% (3 of 38) of the macro-alterations and 1% (3 of 271) of the total HPRT germinal mutations.  相似文献   

4.
5.
6.
The structure of a number of F′ilv episomes derived from F14 by bacteriophage P1-mediated transduction have been determined by the electron microscope heteroduplex method. F16, F25, F310 and F312 are all simple deletion mutants of F14. F316 is essentially the same but contains a small insertion (0.8 kilobase) of DNA of unknown origin within the F sequences at 78.6 F. The length of these plasmids are all about the same as that of phage P1 DNA itself. The sequences of F and the sequences of bacterial DNA that are present on the episomes are contiguous on the parental F14. Thus, their structures are consistent with the usual model for the mechanism of P1 transduction. The physical order of ilv genes is also consistent with previous genetic mapping. From this order one can determine the polarity of the Escherichia coli K12 chromosomal sequences on F14 and its F′ilv derivatives relative to the F sequences. This order is consistent with the known counterclockwise transfer order of the parental Hfr AB313. F′ilv episomes carry only one copy of the 2.8 to 8.5 F sequence, which is present as a direct duplication on F14. The F′ilv episomes are genetically stable, whereas F14 is unstable because of reciprocal recombination between the two duplicate sequences. The strain F316/AB2070 is different in several respects. All of the bacteria carry P1 phage DNA. As noted above, F316 itself carries a small insertion. Two transfer-defective deletion mutants, F316Δ(65.4-78.6) and F316Δ-(78.6-0.6) are also present in the population of F316/AB2070 cells. In each case, the deletion borders on one of the junctions of inserted DNA and F14 DNA in F316. Thus, these junctions appear to be hot spots for deletion formation.  相似文献   

7.
Cellular DNAs from human livers chronically infected with hepatitis B virus (HBV) were analyzed by Southern blot hybridization for the presence of integrated HBV DNA. In 15 of 16 chronically infected hepatic tissues, random HBV DNA integration was evident. By molecular cloning and structural analyses of 19 integrants from three chronically infected hepatic tissues, deletion of cellular flanking DNA in all cases and rearrangement of HBV DNA with inverted duplication or translocation of cellular flanking DNA at the virus-cell junction in some cases were noted. Thus, the rearrangement of HBV DNA or cellular flanking DNA is not a specific incident of hepatocellular carcinoma formation. Detailed analyses of various integrants bearing rearranged viral DNA failed to indicate any gross structural alteration in cellular DNA, except for a small deletion at the integration site, indicating that viral DNA rearrangement with inverted duplication possibly occurs before integration of HBV DNA. Based on nucleotide sequencing analyses of virus-virus junctions, a one- to three-nucleotide identity was found. A mechanism for this inverted duplication of HBV DNA is proposed in which illegitimate recombination between two complementary viral strands may take place by means of a nucleotide identity at the junction site in a weakly homologous region (patchy homology) on one side of adjoining viral sequences. For virus-cell junctions, the mechanism may be basically similar to that for virus-virus junctions.  相似文献   

8.
Recombination between insertion sequence copies can cause genetic deletion, inversion, or duplication. However, it is difficult to assess the fraction of all genomic rearrangements that involve insertion sequences. In previous gene duplication and amplification studies of Acinetobacter baylyi ADP1, an insertion sequence was evident in approximately 2% of the characterized duplication sites. Gene amplification occurs frequently in all organisms and has a significant impact on evolution, adaptation, drug resistance, cancer, and various disorders. To understand the molecular details of this important process, a previously developed system was used to analyze gene amplification in selected mutants. The current study focused on amplification events in two chromosomal regions that are near one of six copies of the only transposable element in ADP1, IS1236 (an IS3 family member). Twenty-one independent mutants were analyzed, and in contrast to previous studies of a different chromosomal region, IS1236 was involved in 86% of these events. IS1236-mediated amplification could occur through homologous recombination between insertion sequences on both sides of a duplicated region. However, this mechanism presupposes that transposition generates an appropriately positioned additional copy of IS1236. To evaluate this possibility, PCR and Southern hybridization were used to determine the chromosomal configurations of amplification mutants involving IS1236. Surprisingly, the genomic patterns were inconsistent with the hypothesis that intramolecular homologous recombination occurred between insertion sequences following an initial transposition event. These results raise a novel possibility that the gene amplification events near the IS1236 elements arise from illegitimate recombination involving transposase-mediated DNA cleavage.  相似文献   

9.
Comparative genetic mapping has indicated that the grass family (Poaceae) exhibits extensive chromosomal collinearity. In order to investigate microcollinearity in these genomes, several laboratories have begun to undertake comparative DNA sequence analyses of orthologous chromosome segments from various grass species. Five different regions have now been investigated in detail, with four regions sequenced for maize, rice and sorghum, plus two for wheat and one for barley. In all five of these segments, gene rearrangements were observed in at least one of the comparisons. Most of the detected rearrangements are small, involving the inversion, duplication, translocation or deletion of DNA segments that contain only 1-3 genes. Even closely related species, like barley and wheat or maize and sorghum, exhibit approximately 20% alterations in gene content or orientation. These results indicate that thousands of small genetic rearrangements have occurred in several grass lineages since their divergence from common ancestors. These rearrangements have largely been missed by genetic mapping and will both complicate and enrich the use of comparative genetics in the grasses.  相似文献   

10.
Helentjaris T  Weber D  Wright S 《Genetics》1988,118(2):353-363
While preparing a linkage map for maize based upon loci detected through the use of restriction fragment length polymorphisms (RFLPs), it was found that 62 of the 217 cloned maize sequences tested (29%) detected more than one fragment on genomic Southern blots. Thus, more than one nucleotide sequence is present within the maize genome which is in part homologous to each of these cloned sequences. The genomic locations of these ``duplicate' sequences were determined and it was found that they usually originated from different chromosomes. The process which produced them did not operate randomly as some pairs of chromosomes share many duplicate sequences while many other pairs share none. Furthermore, these shared duplicate sequences are generally arrayed in an ordered arrangement along these chromosomes. It is believed that chromosomal segments which contain several duplicate loci in a generally ordered arrangement must have had a common origin. The presence of these duplicated segments supports the idea that allopolyploidy may have been involved in the evolution of maize. Nevertheless, the duplicate loci do not primarily involve five pairs of chromosomes and thus, five pairs of homeologous chromosomes are not currently present within the maize genome. The data clearly indicate that maize is not a recent allotetraploid produced by hybridization between two individuals with similar genomic structures; however, the data are also consistent with the possibility of these shared duplicate chromosomal segments having been generated through internal duplication.  相似文献   

11.
X Y Hu  P N Ray    R G Worton 《The EMBO journal》1991,10(9):2471-2477
Three tandem duplications were previously identified in patients with Duchenne muscular dystrophy and were shown in each case to have a subset of dystrophin gene exons duplicated. The origin of these duplications was traced to the single X chromosome of the maternal grandfathers, suggesting that an intrachromosomal event (unequal sister chromatid exchange) was involved in the formation of these duplications. In the present study, a DNA segment containing the duplication junction and the normal DNA that corresponds to both ends of the duplicated region have been cloned. Subsequent mapping studies confirmed the tandem arrangement (head to tail) of these duplications and revealed their sizes to be 130 kb, approximately 300 kb, and 35-80 kb, respectively. Sequence analysis of the duplication junctions showed that one duplication was due to homologous recombination between two repetitive elements (Alu sequences) and the other two were due to recombination between unrelated nonhomologous sequences. In the latter cases, the preferred cleavage sites of the eukaryotic type I and II DNA topoisomerases were found at the junctions of these duplications, suggesting a possible role of these enzymes in the chromatid exchange events. This study provides the first insight into the molecular basis of gene duplications formed through unequal sister chromatid exchange in humans.  相似文献   

12.
The H circle of Leishmania species contains a 30 kb inverted duplication separated by two unique DNA segments, a and b. The corresponding H region of chromosomal DNA has only one copy of the duplicated DNA. We show here that the chromosomal segments a and b are flanked by inverted repeats (198 and 1241 bp) and we discuss how these repeats could lead to formation of H circles from chromosomal DNA. Selection of Leishmania tarentolae for methotrexate resistance indeed resulted in the de novo formation of circles with long inverted duplication, but two mutants selected for arsenite resistance contained new H region plasmids without such duplications. One of these plasmids appears due to a homologous recombination between two P-glycoprotein genes with a high degree of sequence homology. Our results show how the same DNA region in Leishmania may be amplified to give plasmids with or without long inverted duplications and apparently by different mechanisms.  相似文献   

13.
Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains.  相似文献   

14.
The rates and patterns of deletions in the human factor IX gene.   总被引:4,自引:2,他引:2       下载免费PDF全文
Deletions are commonly observed in genes with either segments of highly homologous sequences or excessive gene length. However, in the factor IX gene and in most genes, deletions (of > or = 21 bp) are uncommon. We have analyzed DNA from 290 families with hemophilia B (203 independent mutations) and have found 12 deletions > 20 bp. Eleven of these are > 2 kb (range > 3-163 kb), and one is 1.1 kb. The junctions of the four deletions that are completely contained within the factor IX gene have been determined. A novel mutation occurred in patient HB128: the data suggest that a 26.8-kb deletion occurred between two segments of alternating purines and pyrimidines and that a 2.3-kb sense strand segment derived from the deleted region was inserted. For our sample of 203 independent mutations, we estimate the "baseline" rates of deletional mutation per base pair per generation as a function of size. The rate for large (> 2 kb) deletions is exceedingly low. For every mutational event in which a given base is at the junction of a large deletion, there are an estimated 58 microdeletions (< 20 bp) and 985 single-base substitutions at that base. Analysis of the nine reported deletion junctions in the factor IX gene literature reveals that (i) five are associated with inversions, orphan sequences, or sense strand insertions; (ii) four are simple deletions that display an excess of short direct repeats at their junctions; (iii) there is no dramatic clustering of junctions within the gene; and (iv) with the exception of alternating purines and pyrimidines, deletion junctions are not preferentially associated with repetitive DNA.  相似文献   

15.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

16.
Renewed interest in gene amplification stems from its importance in evolution and a variety of medical problems ranging from drug resistance to cancer. However, amplified DNA segments (amplicons) are not fully characterized in any organism. Here we report a novel Acinetobacter baylyi system for genome‐wide studies. Amplification mutants that consume aromatic compounds were selected under conditions requiring high‐level expression from three promoters in a linked set of chromosomal genes. Tools were developed to relocate these catabolic genes to any non‐essential chromosomal position, and 49 amplification mutants from five genomic contexts were characterized. Amplicon size (18–271 kb) and copy number (2–105) indicated that 30% of mutants carried more than 1 Mb of amplified DNA. Amplification features depended on genomic position. For example, amplicons from one locus were similarly sized but displayed variable copy number, whereas those from another locus were differently sized but had comparable copy number. Additionally, the importance of sequence context was highlighted in one region where amplicons differed depending on the presence of a promoter mutation in the strain from which they were selected. DNA sequences at amplicon boundaries in 19 mutants reflected illegitimate recombination. Furthermore, steady‐state duplication frequencies measured under non‐selective conditions (10?4 to 10?5) confirmed that spontaneous gene duplication is a major source of genetic variation.  相似文献   

17.
18.
T-DNA integration: a mode of illegitimate recombination in plants.   总被引:47,自引:4,他引:47       下载免费PDF全文
Transferred DNA (T-DNA) insertions of Agrobacterium gene fusion vectors and corresponding insertional target sites were isolated from transgenic and wild type Arabidopsis thaliana plants. Nucleotide sequence comparison of wild type and T-DNA-tagged genomic loci showed that T-DNA integration resulted in target site deletions of 29-73 bp. In those cases where integrated T-DNA segments turned out to be smaller than canonical ones, the break-points of target deletions and T-DNA insertions overlapped and consisted of 5-7 identical nucleotides. Formation of precise junctions at the right T-DNA border, and DNA sequence homology between the left termini of T-DNA segments and break-points of target deletions were observed in those cases where full-length canonical T-DNA inserts were very precisely replacing plant target DNA sequences. Aberrant junctions were observed in those transformants where termini of T-DNA segments showed no homology to break-points of target sequence deletions. Homology between short segments within target sites and T-DNA, as well as conversion and duplication of DNA sequences at junctions, suggests that T-DNA integration results from illegitimate recombination. The data suggest that while the left T-DNA terminus and both target termini participate in partial pairing and DNA repair, the right T-DNA terminus plays an essential role in the recognition of the target and in the formation of a primary synapsis during integration.  相似文献   

19.
Bacteriophage HP1c1 lysogenizes its host Haemophilus influenzae Rd by inserting its genome into the bacterial chromosome. The DNA segments corresponding to the integration regions on the phage and host chromosomes and the two junctions formed between phage and host sequences on lysogenic insertion were isolated and propagated in Escherichia coli HB101 as hybrid plasmids by using pBR322 as the vector. The nucleotide sequences in the vicinity of the point of recombinational insertion were determined. Phage and host DNA shared an extensive, nearly identical, segment that was 183 base pairs long. This segment consisted of 93 identical residues and a 27-residue portion containing 6 mismatches, followed by 63 identical residues. Recombinational insertion occurred within the 63-residue identical segment and involved neither duplication nor deletion of any residues. Short inverted repeats consisting of clustered A-T base pairs were present within the two 27-residue segments. Two additional sites on the host chromosome showed significant hybridization to the phage-host homology region.  相似文献   

20.
Duplication/deletion polymorphism 5' - to the human beta globin gene.   总被引:14,自引:3,他引:11       下载免费PDF全文
DNA sequence analysis of the human beta globin locus has identified an array of simple tandem repeated sequences upstream from the beta globin structural gene. Comparison of several cloned human beta globin alleles demonstrated a high frequency of sequence heteromorphism at this site apparently due to duplication or deletion of single units of the repeat array. At least two such duplication/deletion events are necessary to account for the observed variation. No other sequence variation was observed, suggesting that duplication/deletion events within the tandem repeat array may be at least 13 to 14 times more frequent than nucleotide substitutions in the surrounding DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号