首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic and phylogenetic studies were performed on an unidentified Gram-positive, strictly anaerobic, non-spore-forming, rod-shaped bacterium isolated from human feces. The organism was catalase-negative, resistant to 20% bile, produced acetic and butyric acids as end products of glucose metabolism, and possessed a G+C content of approximately 70 mol%. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was a member of the Clostridium sub-phylum of the Gram-positive bacteria, and formed a loose association with rRNA cluster XV. Sequence divergence values of 12% or greater were observed between the unidentified bacterium and all other recognized species within this and related rRNA clusters. Treeing analysis showed the unknown anaerobe formed a deep line branching near to the base of rRNA cluster XV and phylogenetically represents a hitherto unknown taxon, distinct from Acetobacterium, Eubacterium sensu stricto, Pseudoramibacter and other related organisms. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from feces be classified in a new genus Anaerofustis, as Anaerofustis stercorihominis sp. nov. The type strain of Anaerofustis stercorihominis is ATCC BAA-858(T)=CCUG 47767(T).  相似文献   

2.
During studies on the microflora of human feces we have isolated a strictly anaerobic, non-spore-forming, Gram-negative staining organism which exhibits a somewhat variable coccus-shaped morphology. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism is phylogenetically a member of the Clostridium leptum supra-generic rRNA cluster and displays a close affinity to some rDNA clones derived from human and pig feces. The nearest named relatives of the unidentified isolate corresponded to Faecalibacterium prausnitzii (formerly Fusobacterium prausnitzii) displaying a 16S rRNA sequence divergence of approximately 9%, with Anaerofilum agile and A. pentosovorans the next closest relatives of the unidentified bacterium (sequence divergence approximately 10%). Based on phenotypic and phylogenetic considerations, it is proposed that the unusual coccoid-shaped organism be classified as a new genus and species, Subdoligranulum variabile. The type strain of S. variabile is BI 114(T) (=CCUG 47106(T)=DSM 15176(T)).  相似文献   

3.
4.
Jin  Chuan-Bo  Feng  Xi  Zou  Qi-Hang  Ye  Meng-Qi  Du  Zong-Jun 《Antonie van Leeuwenhoek》2021,114(11):1855-1865
Antonie van Leeuwenhoek - A Gram-stain-negative, aerobic, rod-shaped, non-gliding and non-motile bacterium designated as N1E253T, was isolated from marine sediments collected from the coast of...  相似文献   

5.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   

6.
Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Steppe (Altai, Russia) using nitrogen-free alkaline medium of pH 10. The isolates were represented by thin motile rods forming terminal round endospores. They are strictly fermentative saccharolytic anaerobes but tolerate high oxygen concentrations, probably due to a high catalase activity. All of the strains are obligately alkaliphilic and highly salt-tolerant natronophiles (chloride-independent sodaphiles). Growth was possible within a pH range from 7.5 to 10.6, with an optimum at 9.5–10, and within a salt range from 0.2 to 4 M Na+, with an optimum at 0.5–1.5 M for the different strains. The nitrogenase activity in the whole cells also had an alkaline pH optimum but was much more sensitive to high salt concentrations compared to the growing cells. The isolates formed a compact genetic group with a high level of DNA similarity. Phylogenetic analysis based on 16S-rRNA gene sequences placed the isolates into Bacillus rRNA group 1 as a separate lineage with Amphibacillus tropicus as the nearest relative. In all isolates the key functional nitrogenase gene nifH was detected. A new genus and species, Natronobacillus azotifigens gen. nov., sp. nov., is proposed to accommodate the novel diazotrophic haloalkaliphiles. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the 16S rRNA gene of the novel strains are EU143681-EU143690 and EU850814-EU850816; for the nifH gene the accession numbers are EU542601, EU563380-EU563386 and EU850817-EU850819.  相似文献   

7.
A novel Gram-stain-negative, rod-to-spiral-shaped, oxidase- and catalase- positive and facultatively aerobic bacterium, designated HS6T, was isolated from marine sediment of Yellow Sea, China. It can reduce nitrate to nitrite and grow well in marine broth 2216 (MB, Hope Biol-Technology Co., Ltd) with an optimal temperature for growth of 30–33 °C (range 12–45 °C) and in the presence of 2–3 % (w/v) NaCl (range 0.5–7 %, w/v). The pH range for growth was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel isolate was 93.3 % similar to the type strain of Neptunomonas antarctica, 93.2 % to Neptunomonas japonicum and 93.1 % to Marinobacterium rhizophilum, the closest cultivated relatives. The polar lipid profile of the novel strain consisted of phosphatidylethanolamine, phosphatidylglycerol and some other unknown lipids. Major cellular fatty acids were summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH), C18:1 ω7c and C16:0 and the main respiratory quinone was Q-8. The DNA G+C content of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical characteristics, strain HS6T represents a novel genus and species and the name Motiliproteus sediminis gen. nov., sp. nov., is proposed. The type strain is HS6T (=ATCC BAA-2613T=CICC 10858T).  相似文献   

8.
Three Gram-positive, anaerobic, pleomorphic strains (PG10(T), PG18 and PG22), were selected among five strains isolated from pig slurries while searching for host specific bifidobacteria to track the source of fecal pollution in water. Analysis of the 16S rRNA gene sequence showed a maximum identity of 94% to various species of the family Bifidobacteriaceae. However, phylogenetic analyses of 16S rRNA and HSP60 gene sequences revealed a closer relationship of these strains to members of the recently described Aeriscardovia, Parascardovia and Scardovia genera, than to other Bifidobacterium species. The names Neoscardovia gen. nov. and Neoscardovia arbecensis sp. nov. are proposed for a new genus and for the first species belonging to this genus, respectively, and for which PG10(T) (CECT 8111(T), DSM 25737(T)) was designated as the type strain. This new species should be placed in the Bifidobacteriaceae family within the class Actinobacteria, with Aeriscardovia aeriphila being the closest relative. The prevailing cellular fatty acids were C(16:0) and C(18:1)ω9c, and the major polar lipids consisted of a variety of glycolipids, diphosphatidyl glycerol, two unidentified phospholipids, and phosphatidyl glycerol. The peptidoglycan structure was A1γmeso-Dpm-direct. The GenBank accession numbers for the 16S rRNA gene and HSP60 gene sequences of strains PG10(T), PG18 and PG22 are JF519691, JF519693, JQ767128 and JQ767130, JQ767131, JQ767133, respectively.  相似文献   

9.
Morphological, biochemical, and molecular genetic studies were performed on an unknown anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from dog feces. The unknown bacterium was tentatively identified as a Eubacterium species, based on cellular morphological and biochemical tests. 16S rRNA gene sequencing studies, however, revealed that it was phylogenetically distant from Eubacterium limosum, the type species of the genus Eubacterium. Phylogenetically, the unknown species forms a hitherto unknown sub-line proximal to the base of a cluster of organisms (designated rRNA cluster XVI), which includes Clostridium innocuum, Streptococcus pleomorphus, and some Eubacterium species. Based on both phenotypic and phylogenetic criteria, it is proposed that the unknown bacterium be classified as a new genus and species, Allobaculum stercoricanis. Using a specific rRNA-targeted probe designed to identify Allobaculum stercoricanis, in situ hybridisation showed this novel species represents a significant organism in canine feces comprising between 0.1% and 3.7% of total cells stained with DAPI (21 dog fecal samples). The type strain of Allobaculum stercoricanis is DSM 13633(T)=CCUG 45212(T).  相似文献   

10.
Phylogenetic studies were performed on some Gram-positive catalase-negative cocci from human clinical sources of uncertain taxonomic position. 16S rRNA sequence analysis demonstrated that the isolates represent a hitherto unknown line of descent within the low G + C Gram-positive bacteria for which the name Globicatella sanguis gen.nov., sp.nov. is proposed.  相似文献   

11.
12.
13.
On the basis of phenotypic properties and G+C content of DNA, as well as competitive DNA-DNA hybridization and extracellular polymeric substance analysis it was shown that this strain was completely different from all other alkaliphilic bacteria. We hereby propose that this strain be designatedAlkalobacter lublini gen. nov., sp. nov.  相似文献   

14.
Bao  Yixuan  Liu  Junwei  Zhang  Xuan  Lei  Peng  Qiu  Jiguo  He  Jian  Li  Na 《Antonie van Leeuwenhoek》2021,114(10):1609-1617

An obligate anaerobic bacterial strain (BAD-6T) capable of degrading acetochlor and butachlor was isolated from an anaerobic acetochlor-degrading reactor. Cells were Gram-stain positive, straight to gently curved rods with flagella. The major fermentation products in peptone-yeast broth were acetate and butyrate. The optimum temperature and pH for growth was 30 °C and 7.2–7.5, respectively. The major cellular fatty acids (>?10%) were C14:0 FAME, C16:0 FAME and cyc-9,10-C19:0 DMA. Genome sequencing revealed a genome size of 4.80 Mb, a G?+?C content of 43.6 mol% and 4741 protein-coding genes. The most closely related described species on the basis of 16S rRNA gene sequences was Anaerovorax odorimutans NorPutT in the order Clostridiales of the class Clostridia with sequence similarity of 94.9%. The nucleotide identity (ANI) value and digital DNA–DNA hybridization (dDDH) between the genomes of strain BAD-6T and Ana. odorimutans NorPutT were 70.9% and 15.9%, respectively. Based on the distinct differences in phylogenetic and phenotypic characteristics between strain BAD-6T and related species, Sinanaerobacter chloroacetimidivorans gen. nov., sp. nov. is proposed to accommodate the strain. Strain BAD-6T is the type strain (=?CCTCC AB 2021092T?=?KCTC 25290T).

  相似文献   

15.
Park  Sanghwa  Cho  Ja Young  Jung  Dong-Hyun  Jang  Seok Won  Eom  Jung Hye  Nam  Seung Won  Kwon  Dae Ryul  Ryu  Jaewon  Kim  Keug Tae 《Antonie van Leeuwenhoek》2022,115(7):899-909

An aerobic, gram-stain-negative, pink-colored, non-motile and rod-shaped algicidal bacterium, designated as JA-25T was isolated from freshwater in Geumgang River, Republic of Korea. Strain JA-25T grew at 15–30 °C and pH 6–9, and did not require NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain JA-25T belongs to the family ‘Spirosomaceae’ and is most closely related to Fibrella aestuarina BUZ 2T (93.6%). Strain JA-25T showed?<?90% sequence similarity to other members of the family ‘Spirosomaceae’. The average nucleotide identity(ANI), in silico DNA-DNA hybridization and average amino acid identity(AAI) values based on the genomic sequences of JA-25T and F. aestuarina BUZ 2T were 74.4, 20.5, and 73.6%, respectively. Strain JA-25T showed an algicidal effect on the marine flagellate alga Heterocapsa triquetra, but no effect on fresh water cyanobacterium (Nostoc). In genome analysis, RIPP-like peptides were detected and predicted to resemble the indolmycin biosynthetic gene cluster, which possibly influence its algicidal effect. Furthermore, a bacteriorhodopsin gene with photoheterotrophic characteristics was detected. The genomic DNA G?+?C content was 52.5 mol%. The major cellular fatty acids were summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:1 ω5c, C16:0 (>?10%). The major respiratory quinone was menaquinone 7 and major polar lipids were phosphatidylethanolamine, two unidentified aminolipids, two phospholipids, and five unidentified lipids. Considering the phylogenetic inference, phenotypic, and chemotaxonomic data, strain JA-25T should be classified as a novel species in the novel genus Fibrivirga, with the proposed name Fibrivirga algicola sp. nov. The type strain is JA-25T (=?KCCM 43334T?=?NBRC 114259T).

  相似文献   

16.
Phenotypic and molecular genetic studies were performed on an unknown facultative anaerobic, catalase-negative, non-spore-forming, rod-shaped bacterium isolated from a pig manure storage pit. The unknown bacterium was nutritionally fastidious with growth enhanced by the addition of rumen fluid and was phenotypically initially identified as an Eubacterium species. Comparative 16S rRNA gene sequencing studies, however, revealed that the unknown bacterium was phylogenetically distant from Eubacterium limosum (the type species of the genus Eubacterium) and related organisms. Phylogenetically, the unknown species displayed a close association with an uncultured organism from human subgingival plaque and formed an unknown sub-line within a cluster of organisms which includes Alloioccoccus otitis, Alkalibacterium olivoapovliticus, Allofustis seminis, Dolosigranulum pigrum, and related organisms, within the low mol% G+C Gram-positive bacteria. Sequence divergence values of >8% with all known taxonomically recognised taxa, however, clearly indicates the novel bacterium represents a hitherto unknown genus. Based on both phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig manure be classified in a new genus and species, as Atopostipes suicloacale gen. nov., sp. nov. The type strain of Atopostipes suicloacale is PPC79(T)=NRRL 23919(T)=DSM 15692(T).  相似文献   

17.
Phylogenetic studies were performed on some Gram-positive catalase-negative cocci from human clinical sources of uncertain taxonomic position. 16S rRNA sequence analysis demonstrated that the isolates represent a hitherto unknown line of descent within the low G+C Gram-positive bacteria for which the name Globicatella sanguis gen.nov., sp.nov. is proposed.  相似文献   

18.
A bacterial strain, designated JS5-2T, was isolated from soil collected from Jeju Island, Republic of Korea. The cells of the strain were Gram-negative, nonspore forming, catalase- and oxidase-positive, aerobic, nonmotile and rod-shaped. Strain JS5-2T exhibited 96.2–97.2, 95.1–96.3, and 95.4–95.8% 16S rRNA gene sequence similarities to the genera Herbaspirillum, Oxalicibacterium, and Herminiimonas, respectively. The highest sequence similarities were with Herbaspirillum autotrophicum IAM 14942T (97.2%) and Herbaspirillum frisingense GSF30T (97.1%). The major fatty acids of strain JS5-2T were C16:0 (35.0%), C17:0 cyclo (19.9%), C18:1 ω7c (11.4%), and summed feature 3 (C16:1 ω7c/C15:0 iso 2-OH) (15.2%), and the major polar lipids of strain JS5-2T were diphosphatidylglycerol and an unknown aminophospholipid. The strain contained Q-8 as the predominant ubiquinone. DNA-DNA relatedness values between strain JS5-2T and H. autotrophicum IAM 14942T, and H. frisingense GSF30T were 32 and 35%, respectively. The DNA G+C content of strain JS5-2T was 59.0 mol%. On the basis of phenotypic, genotypic, and physiological evidence, strain JS5-2T represents a novel species of a new genus, for which the name Paraherbaspirillum soli gen. nov., sp. nov. is proposed. The type strain JS5-2T (=KACC 12633T =NBRC 106496T) is proposed.  相似文献   

19.
Polyphasic analysis was done on 24 strains of Bisgaard taxon 16 from five European countries and mainly isolated from dogs and human dog-bite wounds. The isolates represented a phenotypically and genetically homogenous group within the family Pasteurellaceae. Their phenotypic profile was similar to members of the genus Pasteurella. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry clearly identified taxon 16 and separated it from all other genera of Pasteurellaceae showing a characteristic peak combination. Taxon 16 can be further separated and identified by a RecN protein signature sequence detectable by a specific PCR. In all phylogenetic analyses based on 16S rRNA, rpoB, infB and recN genes, taxon 16 formed a monophyletic branch with intraspecies sequence similarity of at least 99.1, 90.8, 96.8 and 97.2 %, respectively. Taxon 16 showed closest genetic relationship with Bibersteinia trehalosi as to the 16S rRNA gene (95.9 %), the rpoB (89.8 %) and the recN (74.4 %), and with Actinobacillus lignieresii for infB (84.9 %). Predicted genome similarity values based on the recN gene sequences between taxon 16 isolates and the type strains of known genera of Pasteurellaceae were below the genus level. Major whole cell fatty acids for the strain HPA 21T are C14:0, C16:0, C18:0 and C16:1 ω7c/C15:0 iso 2OH. Major respiratory quinones are menaquinone-8, ubiquinone-8 and demethylmenaquinone-8. We propose to classify these organisms as a novel genus and species within the family of Pasteurellaceae named Frederiksenia canicola gen. nov., sp. nov. The type strain is HPA 21T (= CCUG 62410T = DSM 25797T).  相似文献   

20.
Three strains of Eubacterium-like isolates from human feces were characterized by biochemical tests and 16S rDNA analysis. The phenotypic characteristics of the three strains resembled those of the genus Collinsella transferred from the genus Eubacterium recently. However, Eubacterium-like strains were phylogenetically members of the Clostridium subphylum of gram-positive bacteria, and these showed a specific phylogenetic association with Clostridium ramosum and C. spiroforme. C. ramosum and C. spiroforme are gram-positive, anaerobic, spore-forming bacteria that belong to the genus Clostridium, and the G + C contents are 26.0 and 27.4 mol%, respectively. However, the three Eubacterium-like strains had G + C contents of 32.1 to 33.1 mol% and were non-spore-forming rods. Based on phenotypic characteristics, we can differentiate these species, and furthermore, a 16S rDNA sequence divergence of greater than 9% with a new related genus, Coprobacillus, is proposed for the three strains, with one species, Coprobacillus catenaformis. The type strain of C. catenaformis is JCM 10604T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号