首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An anuran amphibian, South African clawed frog (Xenopus laevis), is used to study the immune system, as it possesses a set of acquired immune system represented by T and B lymphocytes and the immunoglobulins. The acquired immune system is impaired throughout the larva and the metamorphosis stage in the amphibians. On the other hand, the role of innate immune system in the tadpole remains unclear. Recently, insect Toll protein homologues, namely, Toll-like receptors (TLRs), have been identified as sensors recognizing microbe-pattern molecules in vertebrates. Whole-genome analysis of Xenopus tropicalis supported the existence of the tlr genes in the frog. In this study, we annotated 20 frog tlr gene nucleotide sequences from the latest genome assembly version 4.1 on the basis of homology and identified cDNAs of the predicted frog TLR proteins. Phylogenetic analysis showed that the repertoire of the frog TLRs consisted of both fish- and mammalian-type TLRs. We showed that the frog TLRs are constitutively expressed in the tadpole as well as in the adult frog. Our results suggest that tadpoles are protected from microbes by the innate system that includes TLRs, despite impaired acquired immune system in tadpoles. This is the first report on the properties of TLRs in the most primitive terrestrial animals like amphibia. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.  相似文献   

3.
Immune defences and the maintenance of immunological homeostasis in the face of pathogenic and commensal microbial exposures are channelled by innate antimicrobial pattern recognition receptors (PRRs) such as toll‐like receptors (TLRs). Whilst PRR‐mediated response programmes are the result of long‐term host‐pathogen or host–commensal co‐evolutionary dynamics involving microbes, an additional possibility is that macroparasitic co‐infections may be a significant modifier of such interactions. We demonstrate experimentally that macroparasites (the model gastrointestinal nematode, Heligmosomoides) at peripheral sites of infection cause substantial alteration of the expression and function of TLRs at a systemic level (in cultured splenocytes), predominantly up‐regulating TLR2, TLR4 and TLR9‐mediated cytokine responses at times of high standing worm burdens. We consistently observed such effects in BALB/c and C57BL/6 mice under single‐pulse and trickle exposures to Heligmosomoides larvae and in SWR and CBA mice under single‐pulse exposures. A complementary long‐term survey of TLR2‐mediated tumour necrosis factor‐alpha responses in wild wood mice (Apodemus sylvaticus) was consistent with substantial effects of macroparasites under some environmental conditions. A general pattern, though, was for the associations of macroparasites with TLR function to be temporally dynamic and context‐dependent: varying with different conditions of infection exposure in the field and laboratory and with host genetic strain in the laboratory. These results are compelling evidence that macroparasites are a major and dynamic modifier of systemic innate antimicrobial responsiveness in naturally occurring mammals and thus likely to be an important influence on the interaction between microbial exposures and the immune system.  相似文献   

4.
Human toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) to raise innate immune responses. The human TLR family was discovered because of its sequence similarity to fruit fly (Drosophila) Toll, which is involved in an anti-fungal response. In this review, we focus on the origin of the vertebrate TLR family highlighted through functional and phylogenetic analyses of TLRs in non-mammalian vertebrates. Recent extensive genome projects revealed that teleosts contain almost all subsets of TLRs that correspond to human TLRs (TLR1, 2, 3, 4, 5, 7, 8, and 9), whereas the urochordate Ciona intestinalis contains only a few TLR genes. Therefore, mammals likely obtained almost all TLR family members at the beginning of vertebrate evolution. This premise is further supported by several functional analyses of non-mammalian TLRs. We have summarized several teleost TLRs with unique properties distinct from mammalian TLRs to outline their specific roles. According to Takifugu rubripes genome project, the puffer fish possesses fish-specific TLR21 and 22. Surprisingly, phylogenetic analyses indicate that TLR21 and 22 emerged during an early period of vertebrate evolution in parallel with other TLRs and that the mammalian ancestor lost TLR21 and 22 during evolution. Our laboratory recently revealed that TLR22 recognizes double-strand RNA and induces interferon production through the TICAM-1 adaptor, as in TLR3, but unlike TLR3, TLR22 localizes to the cell surface. Therefore, differential expression of TLR3 and TLR22, rather than simple redundancy of RNA sensors, may explain the effective protection of fish from RNA virus infection in the water. In this review, we summarize the similarities and differences of the TLR family in various vertebrates and introduce these unique TLRs for a possible application to the field of clinical practices for cancer or virus infection.  相似文献   

5.
6.
Chronic infection and inflammation are among the most important factors contributing to cancer development and growth. Toll-like receptors (TLRs) are important families of pattern recognition receptors, which recognize conserved components of microbes and trigger the immune response against invading microorganisms. TLR4 is the signaling receptor for lipopolysaccharide (LPS), the endotoxic component of Gram-negative bacteria. Recent studies demonstrate that TLRs are expressed in some tumor cells, and that the expression of TLRs in these cells is associated with tumorigenesis. Cervical intraepithelial neoplasia (CIN) is a key stage in the development of cervical cancer and human papillomavirus (HPV) infection is an essential factor in cervical carcinogenesis. As the cervix is in constant contact with bacteria, especially Gram-negative bacteria, we hypothesize that TLR4-mediated bacterial stimulation may be involved in the tumorigenesis of cervical cancer. In the present study, the expression and distribution of TLR4 in CIN and cervical squamous carcinoma were investigated by immunohistochemistry. To our surprise, we observed a decrease in the expression of TLR4 during the progression of cervical neoplasia and this down-regulation of TLR4 appeared to be associated with the expression of \textP 1 6\textINK4A , {\text{P}}^{{ 1 6^{\text{INK4A}} }} , which is a crucial marker of HPV integration into host cells. These data offer further insight regarding the association of HPV infection and TLR signaling during the carcinogenesis of cervical cancer.  相似文献   

7.
Toll-like receptors (TLR) mediate pathogen recognition in vertebrate species through detection of conserved microbial ligands. Families of TLR molecules have been described from the genomes of the teleost fish model species zebrafish and Takifugu, but much research remains to characterize the full length sequences and pathogen specificities of individual TLR members in fish. While the majority of these pathogen receptors are conserved among vertebrate species with clear orthologues present in fish for most mammalian TLRs, several interesting differences are present in the TLR repertoire of teleost fish when compared to that of mammals. A soluble form of TLR5 has been reported from salmonid fish and Takifugu rubripes which is not present in mammals, and a large group of TLRs (arbitrarily numbered 19-23) was identified from teleost genomes with no easily discernible orthologues in mammals. To better understand these teleost adaptations to the TLR family, we have isolated, sequenced, and characterized the full-length cDNA and gene sequences of TLR5S, TLR20, and TLR21 from catfish as well as studied their expression pattern in tissues. We also mapped these genes to bacterial artificial chromosome (BAC) clones for genome analysis. While TLR5S appeared to be common in teleost fish, and TLR21 is common to birds, amphibians and fish, TLR20 has only been identified in zebrafish and catfish. Phylogenetic analysis of catfish TLR20 indicated that it is closely related to murine TLR11 and TLR12, two divergent TLRs about which little is known. All three genes appear to exist in catfish as single copy genes.  相似文献   

8.
Toll‐Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR‐expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen‐specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti‐ and pro‐tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy. In this review, we highlight the intriguing duplicity of TLR stimulation by pathogens: their protective role in cases of acute infections, and conversely their negative role in favouring hyperplasia and/or cancer onset, in cases of chronic infections. This review focuses on the role of TLRs in the pathophysiology of prostate infection and cancer by exploring the biological bases of the strict relation between TLRs and prostate cancer. In particular, we highlight the debated question of how reliable mutations or deregulated expression of TLRs are as novel diagnostic or prognostic tools for prostate cancer. So far, the anticancer activity of numerous TLR ligands has been evaluated in clinical trials only in organs other than the prostate. Here we review recent clinical trials based on the most promising TLR agonists in oncology, envisaging a potential application also in prostate cancer therapy.  相似文献   

9.
Pattern recognition receptors (PRRs) are essential for recognition of conserved molecular constituents found on infectious microbes. Toll-like receptors (TLRs) are a critical component of the PRR repertoire and are coupled to downstream production of cytokines, chemokines, and antimicrobial peptides by TLR adaptor proteins. Our laboratory previously demonstrated a role for TLR function in the differential innate response of two lines of chickens to bacterial infections. The aim of the present study was to elucidate the role of TLRs in the differential innate responsiveness by measuring differences between lines A (resistant) and B (susceptible) in heterophil mRNA expression of selected TLRs (TLRs 4, 5, and 15) and TLR adaptor proteins (MyD88, TRIF, and TIRAP) in response to stimulation with Salmonella enterica serovar Enteritidis (SE). Although heterophils from both lines had significantly increased expression of TLR 15 mRNA in response to stimulation with SE, heterophils from chickens resistant to infection with SE had significantly greater levels of TLR 15 mRNA expression prior to and following stimulation with SE than heterophils from chickens susceptible to infection with SE. No significant differences were noted between lines in nonstimulated levels of TIRAP, but upon SE stimulation, line A birds had higher levels of expression than B birds. No significant differences were found in heterophils between lines for mRNA expression of TLRs 4 and 5 nor MyD88 and TRIF. These data indicate that differences in the gene expression of TLR 15 by heterophils likely accounts for some of the observed differences between the lines in their susceptibility to infection.  相似文献   

10.
Detailed investigation of variation in genes involved in pathogen recognition is crucial for understanding co‐evolutionary processes between parasites and their hosts. Triggering immediate innate response to invading microbes, Toll‐like receptors (TLRs) belong presently among the best‐studied receptors of vertebrate immunity. TLRs exhibit remarkable interspecific variation and also intraspecific polymorphism is well documented. In humans and laboratory mice, several studies have recently shown that single amino acid substitution may significantly alter receptor function. Unfortunately, data concerning polymorphism in free‐living species are still surprisingly scarce. In this study, we analyzed the polymorphism of Toll‐like receptor 4 (Tlr4) over the Palearctic range of house mouse (Mus musculus). Our results reveal contrasting evolutionary patterns between the two recently (0.5 million years ago) diverged house mouse subspecies: M. m. domesticus (Mmd) and M. m. musculus (Mmm). Comparison with cytochrome b indicates strong directional selection in Mmd Tlr4. Throughout the whole Mmd western Palaearctic region, a single variant of the ligand‐binding region is spread, encoded mainly by one dominant haplotype (71% of Mmd). In contrast, Tlr4 in Mmm is much more polymorphic with several haplotypes at intermediate frequencies. Moreover, we also found clear signals of recombination between two principal haplogroups in Mmm, and we identified eight sites under positive selection in our dataset. Our results suggest that observed differences in Tlr4 diversity may be attributed to contrasting parasite‐mediated selection acting in the two subspecies.  相似文献   

11.
The innate immune system detects microbes and abnormal self through pattern recognition receptors (PRRs), which detect molecules that are either specific for microbes (such as lipopolysaccharide), present in much higher concentrations during infection (such as double‐stranded RNA), or present in aberrant locations (such as cytosolic DNA) 1 . The Toll‐like receptors (TLRs) are the best‐described set of PRRs. TLRs are membrane‐bound receptors localized on the plasma membrane and in endosomes, the ligand‐binding regions of which face the extracellular environment and the endosomal lumen, respectively 1 . In this issue of EMBO Reports, Hu and colleagues report that WD‐repeat and FYVE‐domain‐containing protein 1 (WDFY1) recruits the signaling adaptor TRIF to TLR3 and TLR4, thereby potentiating signaling from these PRRs (Fig  1 ); 2 .  相似文献   

12.
沙门菌病(Salmonellosis)是全世界最普遍的食源性疾病之一,不仅对养殖业造成经济损失,还对人类安全构成威胁。禽沙门菌感染肠道后,可诱导肠上皮细胞表达多种TLRs和炎症反应的发生,在分泌的趋化因子作用下免疫效应细胞迁移到感染部位。细菌通过肠上皮细胞屏障后被巨噬细胞或树突状细胞吞噬,其中巨噬细胞是沙门菌的主要定殖场所。天然免疫系统将抗原递呈给淋巴细胞后,机体能够在2–3周内通过以Th1为主的免疫应答清除在肠道和深层组织中的沙门菌。而宿主特异性血清型鸡白痢沙门菌从肠道侵入后,在肝脾和其他器官中定殖,进而引发全身感染。早期感染阶段不会引起肠道炎症反应,主要诱导以Th2为主的免疫应答,而Th1型应答相对较弱,有利于鸡白痢沙门菌在机体内的持续存在和感染。本文围绕禽沙门菌的致病机理和免疫应答特性进行阐述,尤其对鸡白痢沙门菌免疫逃逸和持续载菌的特性进行深入分析,为禽沙门菌病的防控提供新靶标和新见解。  相似文献   

13.
Infectious diseases have been paramount among the threats to health and survival throughout human evolutionary history. Natural selection is therefore expected to act strongly on host defense genes, particularly on innate immunity genes whose products mediate the direct interaction between the host and the microbial environment. In insects and mammals, the Toll-like receptors (TLRs) appear to play a major role in initiating innate immune responses against microbes. In humans, however, it has been speculated that the set of TLRs could be redundant for protective immunity. We investigated how natural selection has acted upon human TLRs, as an approach to assess their level of biological redundancy. We sequenced the ten human TLRs in a panel of 158 individuals from various populations worldwide and found that the intracellular TLRs—activated by nucleic acids and particularly specialized in viral recognition—have evolved under strong purifying selection, indicating their essential non-redundant role in host survival. Conversely, the selective constraints on the TLRs expressed on the cell surface—activated by compounds other than nucleic acids—have been much more relaxed, with higher rates of damaging nonsynonymous and stop mutations tolerated, suggesting their higher redundancy. Finally, we tested whether TLRs have experienced spatially-varying selection in human populations and found that the region encompassing TLR10-TLR1-TLR6 has been the target of recent positive selection among non-Africans. Our findings indicate that the different TLRs differ in their immunological redundancy, reflecting their distinct contributions to host defense. The insights gained in this study foster new hypotheses to be tested in clinical and epidemiological genetics of infectious disease.  相似文献   

14.
Plant genomes contain two major classes of innate immune receptors to recognize different pathogens. The pattern recognition receptors perceive conserved pathogen-associated molecular patterns and the resistance genes with nucleotide-binding (NB) and leucine-rich repeat (LRR) domains recognize specific pathogen effectors. The precise regulation of resistance genes is important since the unregulated expression of NB-LRR genes can inhibit growth and may result in autoimmunity in the absence of pathogen infection. It was shown that a subset of miRNAs could target NB-LRR genes and act as an important regulator of plant immunity in the absence of pathogens. Plants not only interact with pathogens, but they can also establish symbiotic interactions with microbes. Nitrogen-fixing symbiotic interaction and nodule formation of legumes may also require the suppression of host defence to prevent immune responses. We found that upon symbiotic interactions, miRNAs repressing NB-LRR expression are upregulated in the developing nodules of Medicago truncatula. Furthermore, we show that the suppression of the activity of the NB-LRR genes targeted by these miRNAs is important during nodule development. Our results suggest that the downregulation of NB-LRR resistance genes in the developing nodule produces a suitable niche that facilitates bacterial colonization and the development of an N-fixing nodule.  相似文献   

15.
Abstract

Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial/vial-derived components that trigger innate immune response, which indicate these molecules play a role in host defense against infection. The infection often precedes numerous disorders including glomerular diseases (glomerulonephritis (GN)). It is reported that TLRs are also involved in the risk and progression of GN, and TLRs may be potential therapeutic targets for GN. To date, a number of studies have found that TLRs are involved in the pathogenesis of GN. There is a paucity of reviews in the literature discussing signaling pathways and gene expression for TLRs in GN. This review was performed to provide a relatively complete signaling pathway flowchart for TLRs to the investigators who were interested in the roles of TLRs in the pathogenesis of GN. In the past decades, some studies were also performed to explore the association of TLRs gene expression with the risk of GN. However, the role of TLRs in the pathogenesis of GN remains controversial. Here, the signal transduction pathways of TLRs and its role of gene expression in the pathogenesis of GN were reviewed.  相似文献   

16.
The nucleotide binding oligomerization domain-like receptor (NLR) family of pattern recognition molecules is involved in a diverse array of processes required for host immune responses against invading pathogens. Unlike TLRs that mediate extracellular recognition of microbes, several NLRs sense pathogens in the cytosol and upon activation induce host defense signaling pathways. Although TLRs and NLRs differ in their mode of pathogen recognition and function, they share similar domains for microbial sensing and cooperate to elicit immune responses against the pathogen. Genetic variation in several NLR genes is associated with the development of inflammatory disorders or increased susceptibility to microbial infection. Further understanding of NLRs should provide critical insight into the mechanisms of host defense and the pathogenesis of inflammatory diseases.  相似文献   

17.
Toll-like receptors (TLR) are membrane-bound sensors of the innate immune system that recognize invariant and distinctive molecular features of invading microbes and are also essential for initiating adaptive immunity in vertebrates. The genetic variation at TLR genes has been directly related to differential pathogen outcomes in humans and livestock. Nonetheless, new insights about the impact of TLRs polymorphism on the evolutionary ecology of infectious diseases can be gained through the investigation of additional vertebrate groups not yet investigated in detail. In this study, we have conducted the first characterization of the entire TLR multigene family (N = 10 genes) in non-model avian species. Using primers targeting conserved coding regions, we aimed at amplifying large segments of the extracellular domains (275-435 aa) involved in pathogen recognition across seven phylogenetically diverse bird species. Our analyses suggest avian TLRs are dominated by stabilizing selection, suggesting that slow rates of nonsynonymous substitution help preserve biological function. Overall, mean values of ω (= d(n)/d(s)) at each TLR locus ranged from 0.196 to 0.517. However, we also found patterns of positive selection acting on specific amino acid sites that could be linked to species-specific differences in pathogen-associated molecular pattern recognition. Only 39 of 2,875 (~1.35%) of the codons analyzed exhibited significant patterns of positive selection. At least one half of these positively selected codons can be mapped to putative ligand-binding regions, as suggested by crystallographic structures of TLRs and their ligands and mutagenic analyses. We also surveyed TLR polymorphism in wild populations of two bird species, the Lesser Kestrel Falco naumanni and the House Finch Carpodacus mexicanus. In general, avian TLRs displayed low to moderate single nucleotide polymorphism levels and an excess of silent nucleotide substitutions, but also conspicuous instances of positive directional selection. In particular, TLR5 and TLR15 exhibited the highest degree of genetic polymorphism and the highest occurrence of nonconservative amino acid substitutions. This study provides critical primers and a first look at the evolutionary patterns and implications of TLR polymorphism in non-model avian species and extends the list of candidate loci for avian eco-immunogenetics beyond the widely employed genes of the Major Histocompatibility Complex (MHC).  相似文献   

18.
Aims: To develop an in vivo system that could quantitatively evaluate the therapeutic effects of antifungal drugs using a silkworm infection model with Cryptococcus neoformans. Methods and Results: Silkworms reared at 37°C died after an injection of viable serotype A C. neoformans fungus into the haemolymph. The serotype A C. neoformans, which is known to have higher mammal pathogenicity than the serotype D, was also more virulent against the silkworm. Furthermore, the deletion mutants of genes gpa1, pka1 and cna1, which are genes known to be necessary for the pathogenesis in mammals, showed an increase in the number of fungal cells necessary to kill half of the silkworm population (LD50 value). Antifungal drugs, amphotericin B, flucytosine, fluconazole and ketoconazole, showed therapeutic effects in silkworms infected with C. neoformans. However, amphotericin B was not therapeutically effective when injected into the silkworm intestine, comparable to the fact that amphotericin B is not absorbed by the intestine in mammals. Conclusions: The silkworm–C. neoformans infection model is useful for evaluating the therapeutic effects of antifungal drugs. Significance and Impact of the Study: The silkworm infection model has various advantages for screening antifungal drug candidates. We can also elucidate the cryptococcal pathogenesis and evaluate the in vivo pharmacokinetics and toxicity of each drug.  相似文献   

19.
《Autophagy》2013,9(5):552-554
Autophagy plays an evolutionarily conserved role in host defense against pathogens. Autophagic protection

mechanisms against microbes range from regulating immune signaling responses to directly targeting the

pathogens for lysosomal degradation. Toll-like receptors (TLRs) that detect conserved molecular features shared by pathogens regulate several innate immune responses including autophagy. Our recent study demonstrates that autophagy reported in response to TLR4-stimulation in macrophages is selective

autophagy of aggresome-like induced structures (ALIS), and p62 (also known as SQSTM1) plays an essential role in this process. Treatment of macrophages with either Escherichia coli or lipopolysaccharide (LPS) results in the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), leading to an increase in the levels of p62 mRNA and protein, assembly of ALIS and their autophagic degradation. This study revealed a signaling

role for p62, distinct from its known function as a bacterial-targeting factor, which might be critical for cellular stress response during infection.  相似文献   

20.
Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochaete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real‐time microscopic imaging of the Lyme spirochaete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32‐dependent vascular adhesion in vivo. We determined that BBK32–Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32–GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32‐like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号