首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
破骨细胞起源于造血干细胞,是体内一种负责骨吸收的骨特异性多核细胞,在骨代谢平衡的调控中起着重要作用。破骨细胞的分化形成及功能活性异常可引起一系列临床疾病,而其分化形成过程受到多种因子的调控,近年来越来越多研究聚焦于miRNAs对破骨细胞分化形成过程的调控作用。因此,本文主要对影响破骨细胞分化形成的相关miRNAs进行综述,为后续相关研究提供参考。  相似文献   

2.
骨疾病是指机体因先天或后天性因素破坏正常骨代谢,导致骨代谢障碍而发生的一类疾病.骨主要由负责骨吸收的破骨细胞和负责骨重建的成骨细胞以及骨细胞构成.正常成人的骨形成量基本等于骨吸收量,两者处于动态平衡状态,保证了骨结构和功能的完整性.自噬是一种重要的细胞内清除机制,通过形成自噬溶酶体降解其所包裹的受损细胞器或蛋白质,实现...  相似文献   

3.
骨质疏松症的根本病因是由于多种因素导致成骨细胞介导的骨形成与破骨细胞介导的骨吸收过程之间的负平衡,引起骨质进行性丢失,骨密度降低,骨脆性增加,进而导致骨折风险增加。越来越多的研究表明,DNA甲基化可通过调控相关基因表达调节成骨细胞/破骨细胞的分化与功能,进而影响骨形成/骨吸收平衡,介导骨质疏松症的发生、发展。现主要阐述DNA甲基化与骨代谢调节和骨质疏松症之间的关系,并对相关研究进展进行综述。  相似文献   

4.
成纤维细胞生长因子23(fibroblast growth factor 23,FGF23)由骨骼中的成骨细胞和骨细胞分泌,作为激素样蛋白在复杂的内分泌网络中发挥核心作用,是调节细胞外基质矿化的局部骨源因子和参与矿物代谢的全身激素.FGF23主要靶向肾脏调节磷酸盐的重吸收,1,25--二羟基维生素D的产生和分解代谢以及...  相似文献   

5.
越来越多的研究表明microRNA广泛参与骨代谢的调控,调节骨髓间充质干细胞、成骨及破骨细胞的增殖及分化,调控骨形成与骨吸收之间的平衡,在维持骨代谢平衡中发挥重要作用。近年来有研究报道老年性骨质疏松、绝经后骨质疏松均与miR-214的高表达有关。miR-214通过靶向作用于Osterix、ATF-4、FGFR1、Pten以及LZTS1等基因调控骨髓间充质干细胞、成骨细胞以及破骨细胞等骨组织细胞的增殖及分化,进而抑制骨形成,促进骨吸收。本文主要综述了miR-214对骨髓间充质干细胞、成骨细胞以及破骨细胞分化的调控作用,旨在探讨miR-214对骨形成的抑制作用,为骨质疏松等骨疾病的诊断及治疗提供理论依据。  相似文献   

6.
元宇  张玲莉 《生物工程学报》2021,37(7):2342-2350
骨代谢的平衡取决于骨形成及骨吸收之间的动态平衡,Wnt/β-catenin信号通路能够广泛参与骨吸收及骨形成的调控,在维持骨代谢平衡中发挥着重要作用.近年来有研究表明,长链非编码RNA(Long non-coding RNA,lncRNA)也广泛参与骨代谢各阶段的调节,还能通过Wnt/β-catenin信号通路参与骨代...  相似文献   

7.
骨是一种动态更新的组织,它不断进行骨吸收(bone resorption)与骨形成(bone formation)的平衡,这个过程称之为骨重建(bone remodeling).核因子κB受体活化因子配体(receptor activator of nuclear factor κB ligand,RANKL)是骨吸收和骨形成耦联的关键,具有诱导破骨细胞(osteoclast, OC)生成、活化,抑制破骨细胞凋亡的作用.RANKL最初发现于活化的T细胞,但骨重建过程中RANKL主要来源于骨细胞、成骨细胞和骨髓基质细胞.RANKL/核因子κB受体活化因子(receptor activator of nuclear factor κB,RANK)/骨保护素(osteoprotegerin, OPG)信号通路在成骨细胞调控破骨细胞生成的过程中起着重要的调节作用,是维持骨重建平衡的关键.本文就RANKL及其在骨中的分子作用机制作一综述.  相似文献   

8.
肾脏的HCO3-重吸收功能对于维持机体的酸碱平衡具有非常重要的意义,HCO3-重吸收障碍会导致代谢性酸中毒。近端肾小管是HCO3-重吸收最主要的部位,约80%的HCO3-在这里被回收至血液中。经过半个多世纪的研究,人们已经对近端肾小管跨上皮细胞的HCO3-转运过程的分子机制有了比较深入的了解。这个过程涉及到上皮细胞的顶端膜与基底侧膜一系列离子转运体的协同作用。在近端肾小管顶端膜,钠氢交换体NHE3和V型质子泵是介导HCO3-重吸收的两个重要途径。其中NHE3负责约50%,V型质子泵约30%,另外20%由其它途径介导。在基底侧膜,Na+/HCO3-共转运体NBCe1负责将HCO3-转运至组织间隙,完成跨上皮细胞运输过程。在本文中,我们梳理了过去半个世纪关于近端肾小管的HCO3-重吸收分子机制研究的历史脉络,重点阐述了最近十来年相关研究的最新进展,深入讨论近端肾小管上皮细胞中酸碱离子转运体的生理学及病理学作用,并就存在的问题进行探讨与展望。  相似文献   

9.
温带森林演替加剧了氮限制:来自叶片化学计量和养分重吸收的证据 森林生产力和碳汇功能在很大程度上取决于土壤氮和磷的有效性。然而,迄今为止,养分限制随森林演替的时间变化仍存在争议。叶片化学计量和养分重吸收是预测植物生长养分限制的重要指标。基于此,本研究测定了温带森林4个演替阶段所有木本植物叶片和凋落叶中氮和磷的含量,并分析了演替过程中非生物因子和生物因子如何影响叶片化学计量和养分重吸收。研究结果表明,在个体尺度上,叶片氮磷含量在演替末期显著增加,而叶片氮磷比无显著变化;氮的重吸收效率随演替显著增加,然而磷的重吸收效率先增加后减少;氮重吸收效率与磷重吸收效率的比值仅在演替末期显著增加。此外,植物氮素循环对土壤养分的响应比磷素循环更弱。在群落尺度上,叶片氮磷含量随森林演替呈现先降低后升高的趋势,主要受香农-维纳多样性指数和物种丰富度的影响;叶片氮磷比随演替而显著变化,主要由胸径的群落加权平均值决定;氮的重吸收效率增加,主要受物种丰富度和胸径的影响,而磷的重吸收效率相对稳定。因此,氮重吸收效率与磷重吸收效率的比值显著增加,表明随着温带森林演替,氮限制加剧。这些结果可能反映了较高生物多样性群落中物种间对有限资源的激烈竞争,强调了生物因子在驱动森林生态系统养分循环中的重要性,为中国温带和北方森林可持续经营的施肥管理提供了参考。  相似文献   

10.
钠-葡萄糖协转运蛋白(SGLT)是一类在小肠(SGLT-1)和肾脏近曲小管(SGLT-1、SGLT-2)发现的蛋白基因家族,负责吸收 和重吸收葡萄糖。在肾脏处,SGLT 蛋白,特别是SGLT-2 蛋白将肾小球滤过液中的绝大部分葡萄糖重新转运进入血液,从而维持 体内血糖的稳定与平衡。SGLT 蛋白抑制剂通过阻断该蛋白的转运机制,使葡萄糖随尿液排出从而降低血糖,为糖尿病的治疗提 供了创造性的思路。本文重点阐述了SGLT 蛋白和SGLT 抑制剂的作用机制,以及近年来SGLT-2 抑制剂的研发上市情况。  相似文献   

11.
维持骨体积是骨吸收与骨形成相对平衡的结果,如失去这种稳定,则发生病理性变化,骨吸收破坏是主要现象之一,但关于骨吸收机理还不清楚。近些年来随着骨细胞培养技术的发展,使人们对骨吸收有了进一步认识,目前公认破骨细胞是骨吸收作用的主要承担者。为此,大多数学者从破骨细胞入手,对破骨细胞的结构和功能等进行研究。目前已从多种动物骨组织中分离出破骨细胞。本实验是通过建立人的破骨细胞分离、培养方法,为进一步开展骨吸收机理的研究奠定基础。  相似文献   

12.
骨骼形成后会处于不断的分解与重建中.通过骨骼形成与骨骼吸收之间的动态平衡来维持骨量.如果二者间的平衡被打破,骨吸收大于骨形成时,骨量会减少,骨骼微环境随之发生改变,脆性增加,进而引发骨质疏松、骨折等疾病.其中,骨骼形成是成骨细胞的重要功能.成骨细胞由间充质干细胞(mesenchymal stem cells,MSCs)...  相似文献   

13.
肾小管髓袢升支粗段对Na~+的重吸收罗自强(湖南医科大学生理教研室410078)肾小管髓拌升支粗段对Na+的重吸收是被动吸收过程,或是主动吸收过程?80年代前一般认为,髓拌升支粗段对Cl-的重吸收是主动过程,而对Na+的重吸收是被动过程。其主要实验依?..  相似文献   

14.
肾的主要机能是维持内环境恒定,水平衡是通过控制水摄入和肾排水实现的。肾排水受抗利尿激素调节。细胞外液渗透浓度的恒定是通过水平衡的调节实现的。细胞外溶容积的恒定是通过肾排Na^+的调节实现的,钠平衡是由调控肾排钠进行,肾排钠主要受醛固酮调节?酸碱平衡依赖于血液缓冲系统,呼吸系统和肾的协同作用,肾通过肾小管上皮细胞的分泌和重吸收机能,排酸保碱贮或排出过剩的碱来调节血浆的硷贮。排酸保硷的机制是H^+-N  相似文献   

15.
骨形成蛋白调控成骨分化的信号机制   总被引:7,自引:0,他引:7  
王茸影  易静 《生命科学》2005,17(1):34-39
骨形成蛋白(bone morphogenetic proteins,BMPs)能诱导成骨细胞和软骨细胞的分化成熟,并能在体内诱导异位成骨。BMPs与骨形成蛋白受体BMPR结合,通过Smads和p38MAPKs途径进行信号转导,并通过下游转录因子Cbfal、Osterix、Dlx等与相应的成骨细胞特异蛋白碱性磷酸酶、骨钙素、OPN等基因启动子连接,促进细胞向成骨方向分化。另外,还通过转录因子CIZ、AJ18等对成骨进行负调控,维持胚胎发育正常,保持骨量平衡。由于BMPs在骨修复中的重要作用,现已成为基因治疗用于骨缺损的一个研究热点。  相似文献   

16.
运动改善骨代谢,促进骨骼生长发育,缓解骨量流失的作用已被广泛证实。在骨代谢中,微小RNA(microRNAs,miRNAs)广泛参与骨髓间充质干细胞、成骨细胞及破骨细胞等骨组织细胞的增殖及分化,通过靶向作用于相关成骨因子或骨吸收因子调控骨形成与骨吸收之间的平衡,在骨代谢的调控中发挥重要作用。近年的研究表明,调控miRNAs是运动或机械应力促进骨代谢正平衡的途径之一,运动能够诱导骨骼中miRNAs差异表达,进而调控相关成骨因子或骨吸收因子的表达,进一步加强运动的促成骨效应。本综述总结了运动介导miRNAs调控骨代谢的相关研究进展,为骨质疏松的运动防治提供理论基础。  相似文献   

17.
骨组织中有两类参与调控骨代谢过程的细胞,成骨细胞负责造骨,破骨细胞负责溶骨。在一些骨相关疾病(如骨质疏松、骨相关肿瘤)发病过程中,造骨和溶骨失去平衡,这种失衡与破骨细胞和成骨细胞的数量异常及功能失调都有关,所以对成骨细胞分化机制的研究也是十分必要的。目前,已经有大量的文献表明,成骨细胞分化机制复杂,受许多激素、细胞因子以及一些小分子化合物的调控和影响,如骨形态发生蛋白(BMP)、Wnts等。  相似文献   

18.
《生物学通报》2013,(7):62-62
骨细胞是成熟骨组织中的主要细胞,对骨吸收和骨形成都起作用,是维持成熟骨新陈代谢的主要细胞。日本研究人员在动物实验中发现,骨细胞不仅形成骨骼,还控制着骨髓内造血干细胞的活动。  相似文献   

19.
骨形成问题涉及到小儿生长发育、病理生理、运动生理、骨折愈合、老年病学等基本医学问题;与骨关系最密切的钙离子目前已知是人体代谢活动的重要调节因子;在骨的病理条件下(如佝偻病、骨质疏松、骨软化等),骨的形成均发生变化。国外对骨形成机制的研究十分重视,按时间大体上可以分为两个时期,即在50和60年代前,主要是通过光学显微镜、X 射线摄影和平衡研究(balance study)等定性描述和粗糙的定量研究方法进行;60和70年代以后,由于引入了电镜技术和分子生物学研究方法,应用电镜观察、显微放射摄影术(microradiography)、放射自显影(autoradiography)、电子探针 X 射线分析法(electron microprobe X-ray analyser)、核磁共振(nuclear magnetic resonance)等现代方法对骨的超微结构进行了深入研究。分子内分泌学的研究使人们对某些激素在成骨活动中的作用了解得更系统更全面;对生物大分子——蛋白质、核酸、酶在成骨活动中的作用也进行了深入研究。这  相似文献   

20.
本研究以亚热带29种3年生人工纯林为对象,研究了29个树种功能性状与氮磷重吸收效率的关系。结果表明: 29种幼林平均氮、磷重吸收效率分别为50.5%和57.3%。22种丛枝菌根树种的氮重吸收效率平均为52.7%,显著高于7种外生菌根树种(45.1%)。29个树种的细根组织密度与氮重吸收效率呈显著正相关,7种外生菌根树种细根直径与磷重吸收效率呈显著正相关,22种丛枝菌根树种的功能性状对氮重吸收效率和磷重吸收效率无显著影响。在29个树种中,菌根类型、比叶面积、细根组织密度、叶厚度及叶厚度与菌根类型的相互作用共同解释氮重吸收效率变异的27%,比根长、细根碳含量、细根碳氮比、菌根类型、叶片碳含量及叶片碳含量与菌根类型的相互作用共同解释磷重吸收效率变异的35%。因此,亚热带树种根系功能性状能较好地预测了氮、磷养分重吸收效率,综合多个功能性状可以更好地揭示不同生物因子对养分重吸收的相对重要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号