首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: To determine the efficacy of room fumigation with vaporized hydrogen peroxide (VHP) in decontamination of viable Mycobacterium tuberculosis. METHODS AND RESULTS: About 8 x 10(4)-2.3 x 10(6) CFU of M. tuberculosis H37Rv and M. tuberculosis Beijing were dried in 10-microl drops in tissue culture plates, placed in steam-permeable Tyvek pouches and distributed on laboratory surfaces. The room was exposed to VHP delivered by air conditioning. Different exposure conditions were tested. Exposure to VHP resulted in sterilization of the bacterial samples in three different test runs. CONCLUSIONS: VHP treatment is an effective means of reducing and eliminating room contaminations of M. tuberculosis. SIGNIFICANCE AND IMPACT OF THE STUDY: Fumigation with VHP represents an alternative to formaldehyde fumigation, particularly for decontamination of animal rooms in tuberculosis research laboratories.  相似文献   

2.
Glutaraldehyde, 0.2%, in a 1:100 (wt/vol) ratio, inactivated four animal viruses (foot-and-mouth disease, swine vesicular disease, African swine fever, hog cholera) in swine heart tissues during 11-day exposures at 22 to 26 degrees C.  相似文献   

3.
4.
Medical devices are an important and growing aspect of healthcare provision and are increasing in complexity to meet established and emerging patient needs. Terminal sterilization plays a vital role in the provision of safe medical devices. While terminal sterilization technologies for medical devices include multiple radiation options, ethylene oxide remains the predominant nonthermal gaseous option, sterilizing c. 50% of all manufactured devices. Vaporized hydrogen peroxide (abbreviated VH2O2 by the International Organization for Standardization) is currently deployed for clinical sterilization applications, where its performance characteristics appear aligned to requirements, constituting a viable alternative low-temperature process for terminal processing of medical devices. However, VH2O2 has operational limitations that create technical challenges for industrial-scale adoption. This timely review provides a succinct overview of VH2O2 in gaseous sterilization and addresses its applicability for terminal sterilization of medical devices. It also describes underappreciated factors such as the occurrence of nonlinear microbial inactivation kinetic plots that may dictate a need to develop a new standard approach to validate VH2O2 for terminal sterilization of medical devices.  相似文献   

5.
The compound LY231617 [2,6-bis(1,1-dimethylethyl)-4-[[(1-ethyl)amino]methyl]phenol hydrochloride] has been reported to afford significant neuroprotection against hydrogen peroxide (H2O2)-induced toxicity in vitro and global ischemia in vivo. We now report on further mechanistic studies of H2O2 toxicity and protection by LY231617. Brief exposure to H2O2 (15 min) elicited an oxidative insult comparable with that generated by overnight treatment. H2O2-mediated cellular degeneration was characterized using lactate dehydrogenase (LDH) release, changes in total glutathione, and a new marker of oxidative stress, 8-epiprostaglandin F2alpha (8-isoprostane). LY231617 attenuated H2O2-mediated degeneration under a variety of exposure conditions, including a more clinically relevant posttreatment paradigm. Levels of 8-isoprostane paralleled LDH release under various treatment paradigms of 100 microM H2O2 +/- 5 microM drug. In contrast, despite affording significant protection, LY231617 had modest to no effects on cellular levels of glutathione. Taken together, these results are consistent with a membrane site of action for LY231617 and suggest that the compound affords cytoprotection via its antioxidant properties.  相似文献   

6.
The sporicidal properties of hydrogen peroxide were evaluated at concentrations of 10 to 41% and at temperatures of 24 to 76 C. The organisms tested and their relative resistance at 24 C to 25.8% H2O2 were: Bacillus subtilis SA 22 > B. subtilis var. globigii > B. coagulans > B. stearothermophilus > Clostridium sp. putrefactive anaerobe 3679 > S. aureus, with „D” values of 7.3, 2, 1.8, 1.5, 0.8., and 0.2 min, respectively. Heat shocking spores prior to hydrogen peroxide treatment decreased their resistance. Wet spores were more resistant than dry spores when good mixing was achieved during hydrogen peroxide treatment. Inactivation curves followed first-order kinetics except for a lag period where the inactivation rate was very slow. Increasing the H2O2 concentration and the temperature reduced the lag period.  相似文献   

7.
8.
Aims:  To investigate the effects of salicylates in Saccharomyces cerevisiae exposed to oxidative stress induced by hydrogen peroxide (H2O2).
Methods and Results:  Saccharomyces cerevisiae was cultured through to the postlogarithmic phase of growth. Stress was induced by the addition of 1·5 mmol l−1 H2O2 for 1 h, while N-acetyl-l-cysteine (NAC) and glutathione (GSSG) were used as control agents that affect the redox balance. Sodium salicylate, at 0·01–10 mmol l−1or acetylsalicylic acid, at 0·02–2·5 mmol l−1 was administered at various times before hydrogen peroxide stress. Both agents conferred resistance to a subsequent hydrogen peroxide stress, similarly to the induction of the adaptive response observed upon pretreatment with NAC and GSSG. Sodium salicylate was more potent as a short-term, but not as a long-term pretreatment agent, compared to acetylsalicylic acid.
Conclusions:  Pharmacological pretreatment with salicylates resulted in dose related increases in cell survival, indicating the induction of the protective response in yeast.
Significance and Impact of the study:  The possible role of salicylates in the modulation of the hydrogen peroxide stress response in eukaryotic cells address questions on the effects of these commonly used therapeutic agents in a number of disorders exhibiting an oxidative stress component.  相似文献   

9.
10.
Nitric oxide (NO) and hydrogen peroxide (H2O2) show cooperativity in their cytotoxic action. The present study was performed to decipher the mechanisms underlying this phenomenon. In cultured liver endothelial cells and in cultured, glutathione-depleted hepatocytes, the combined exposure to NO (released by spermine NONOate, 1 mM) and H2O2 (released by glucose oxidase) induced cell injury that was far higher than the injury elicited by NO or H2O2 alone. In both cell types, the addition of the NO donor increased H2O2 steady-state levels, although with different kinetics: in hepatocytes, the increase in H2O2 levels was already evident at early time points while in liver endothelial cells it became evident after 2 h of incubation. NO exposure inhibited H2O2 degradation, assessed after addition of 50 µM, 200 µM, or 4 mM authentic H2O2, significantly in both cell types. However, again, early and delayed inhibition was observed. The late inhibition of H2O2 degradation in endothelial cells was paralleled by a decrease in glutathione peroxidase activity. Glutathione peroxidase inactivation was prevented by hypoxia or by ascorbate, suggesting inactivation by reactive nitrogen oxide species (NOx). Early inhibition of H2O2 degradation by NO, in contrast, could be mimicked by the catalase inhibitor azide. Together, these results suggest that the cooperative effect of NO and H2O2 is due to inhibition of H2O2 degradation by NO, namely to inhibition of catalase by NO itself (predominant in hepatocytes) and/or to inhibition of glutathione peroxidase by NOx (prevailing in endothelial cells). nitrogen monoxide; catalase; glutathione peroxidase  相似文献   

11.
The response of Haemonchus contortus to oxidative stress in vitro was examined by measuring catalase activities in adult and L4 stage worms exposed to hydrogen peroxide generated by a glucose/glucose oxidase system. Adult nematodes showed increases of up to 2.3-fold in catalase activity after 42 h exposure to the peroxide. L4 nematodes showed up to 4.6-fold induction. A two-stage dose-response was apparent, with catalase activities increasing as the peroxide levels increased, before a return to control levels at higher peroxide concentrations, most likely reflecting a balance between induction and toxicity of the inducing agent itself. Adult nematodes exposed to low levels of peroxide for 24h (hence, having enhanced catalase activities) showed an ability to tolerate subsequent exposure to toxic levels of the peroxide compared to worms with no pre-exposure. An increase of up to approximately threefold in the LC(50) of the hydrogen peroxide generating system was observed after hydrogen peroxide pre-exposure. This indicates that exposure to low oxidant levels lead to an increase in defensive enzyme activities, which allows the nematode to survive subsequent oxidant threats more effectively. The ability of H contortus to increase its catalase activity may be crucial in allowing it to respond to the production of reactive oxygen species by host phagocytes in vivo.  相似文献   

12.
Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2O2). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2O2 but can be protected by less-sensitive species such as green algae. Our laboratory results show that green algae degrade H2O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two-component H2O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2O2 and thereby protect the bloom-forming cyanobacteria.  相似文献   

13.
14.
15.
The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled ØX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17β significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17β at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.  相似文献   

16.
The aim of the presented study was determined the effectiveness of sporicidal activity the peracetic acid and the hydrogen peroxide against B. anthracis spores. In the investigations was used B. anthracis stain "Sterne" 34F2. As inactivators were applied 0,5 % natriumthiosulphate and catalase. The obtained results show that the sporicidal effect of studied substances depends from their concentration and operates time. 5% water solution of peracetic acid shows the full sporicidal activity after outflow 120 minutes and the hydrogen peroxide about concentration 30% after outflow 180 minutes. However the hydrogen peroxide.  相似文献   

17.
The catalase activity of cultured rat hepatocytes was inhibited by 90% pretreatment with 20 mM aminotriazole without effect on the activities of glutathione peroxidase or glutathione reductase, or on the viability of the cells over the subsequent 24 h. Glutathione reductase was inhibited by 85% by pretreatment with 300 microM 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) without effect on glutathione peroxidase, catalase, or on viability. Both pretreatments sensitized the hepatocytes to the cytotoxicity of H2O2 generated either by glucose oxidase (0.05-0.5 units/ml) or by the autoxidation of the one-electron-reduced state of menadione (50-250 microM). Aminotriazole pretreatment had no effect on the GSH content of the hepatocytes. BCNU reduced GSH levels by 50%. Depletion of GSH levels to less than 20% of control by treatment with diethyl maleate, however, did not sensitize the cells to either glucose oxidase or menadione, indicating that the effect of BCNU is related to inhibition of the GSH-GSSG redox cycle rather than to the depletion of GSH. With glucose oxidase, most of the cell killing in hepatocytes pretreated with either aminotriazole or BCNU occurred between 1 and 3 h. The antioxidant diphenylphenylenediamine (DPPD) had no effect on viability at 3 h. Catalase added to the culture medium 1 h after the addition of glucose oxidase prevented the cell killing measured at 3 h. The sulfhydryl reagents dithiothreitol (200 microM), N-acetyl-L-cysteine (4 mM), and alpha-mercaptopropionyl-L-glycine (2.5 mM) prevented the cell killing with exogenous H2O2 in hepatocytes sensitized by the inhibition of catalase or glutathione reductase. With menadione, there was no killing of nonpretreated hepatocytes at 1 h, and DPPD did not prevent the cell death after 3 h. Aminotriazole pretreatment enhanced the cell killing at 3 h but not at 1 h, and DPPD was not protective. Catalase added to the medium at 1 h inhibited the cell death measured at 3 h. In contrast, menadione killed hepatocytes pretreated with BCNU within 1 h. DPPD prevented cell death at 1 h, and there was evidence of lipid peroxidation in the accumulation of malondialdehyde in the culture medium. Catalase added with menadione did not prevent the cell killing at 1 h but did prevent it at 3 h. These data indicate that catalase and the GSH-GSSG cycle are active in the defense of hepatocytes against the toxicity of H2O2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Flavonoids are a class of secondary metabolites abundantly found in fruits and vegetables. In addition, flavonoids have been reported as potent antioxidants with beneficial effects against oxidative stress-related diseases such as cancer, aging, and diabetes. The present study was carried out to investigate the cytoprotective effects of morin (2′,3,4′,5,7-pentahydroxyflavone), a member of the flavonoid group, against hydrogen peroxide (H2O2)-induced DNA and lipid damage. Morin was found to prevent the cellular DNA damage induced by H2O2 treatment, which is shown by the inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation (a modified form of DNA base), inhibition of comet tail (a form of DNA strand breakage), and decrease of nuclear phospho histone H2A.X expression (a marker for DNA strand breakage). In addition, morin inhibited membrane lipid peroxidation, which is detected by inhibition of thiobarbituric acid reactive substance (TBARS) formation. Morin was found to scavenge the intracellular reactive oxygen species (ROS) generated by H2O2 treatment in cells, which is detected by a spectrofluorometer, flow cytometry, and confocal microscopy after staining of 2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA). Morin also induces an increase in the activity of catalase and protein expression. The results of this study suggest that morin protects cells from H2O2-induced damage by inhibiting ROS generation and by inducing catalase activation.  相似文献   

19.
Two methionine-modified derivatives of human somatotropin have been prepared by oxidation of the methionines with H2O2 to sulfoxide. The monomeric derivatives were characterized by exclusion chromatography, amino acid composition, circular dichroism spectra, relative rates of tryptic digestion, and biological property. Partially oxidized somatotropin, with two of its three methionines oxidized, was found to be similar to the native hormone by all criteria examined except that the growth promoting potency was reduced to 25% of the native hormone. The unoxidized methionine in this derivative was found to be the residue at position 170. The derivative in which all of the methionines had been oxidized showed major changes in all physical parameters examined as well as significant loss of the growth-promoting activity.  相似文献   

20.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号