首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Jeon JS  Lee S  An G 《Molecules and cells》2008,26(5):474-480
OsMADS1 is a rice MADS box gene necessary for floral development. To identify the key cis-regulatory regions for its expression, we utilized transgenic rice plants expressing GUS fusion constructs. Histochemical analysis revealed that the 5.7-kb OsMADS1 intragenic sequences, encompassing exon 1, intron 1, and a part of exon 2, together with the 1.9-kb 5' upstream promoter region, are required for the GUS expression pattern that coincides with flower-preferential expression of OsMADS1. In contrast, the 5' upstream promoter sequence lacking this intragenic region caused ectopic expression of the reporter gene in both vegetative and reproductive tissues. Notably, incorporation of the intragenic region into the CaMV35S promoter directed the GUS expression pattern similar to that of the endogenous spatial expression of OsMADS1 in flowers. In addition, our transient gene expression assay revealed that the large first intron following the CaMV35S minimal promoter enhances flower-preferential expression of GUS. These results suggest that the OsMADS1 intragenic sequence, largely intron 1, contains a key regulatory region(s) essential for expression.  相似文献   

5.
ADP-glucose pyrophosphorylase (AGPase) represents a key regulatory step in starch synthesis. A 0.9 kb of 5′ flanking region preceding Brittle2 gene, encoding the small subunit of maize endosperm AGPase, was cloned from maize genome and its expression pattern was studied via the expression of β-glucuronidase (GUS) gene in transgenic tobacco. Analysis of GUS activities showed that the 0.9 kb fragment flanking Brittle2 gene was sufficient for driving the seed-preferred expression of the reporter gene. The activity of the 0.9 kb 5′ flanking fragment was compared with that of the tandem promoter region from a zein gene (zE19, encoding a maize 19 kDa zein protein). The results indicated that both promoters were seed-preferred in a dicotyledonous system as tobacco and the activity of zE19 promoter was three to fourfold higher than that of the 0.9 kb fragment flanking Brittle2 gene in transgenic tobacco seeds. At the same time, zE19-driven GUS gene expressed earlier than Brittle2 promoter during seed development. Histochemical location of GUS activity indicated that both promoters showed high expression in embryos, which is different from similar promoters tested in maize.  相似文献   

6.
Lu J  Sivamani E  Li X  Qu R 《Plant cell reports》2008,27(10):1587-1600
Ubiquitin is an abundant protein involved in protein degradation and cell cycle control in plants and rubi3 is a polyubiquitin gene isolated from rice (Oryza sativa L.). Using both GFP and GUS as reporter genes, we analyzed the expression pattern of the rubi3 promoter as well as the effects of the rubi3 5'-UTR (5' untranslated region) intron and the 5' terminal 27 bp of the rubi3 coding sequence on the activity of the promoter in transgenic rice plants. The rubi3 promoter with the 5'-UTR intron was active in all the tissue and cell types examined and supported more constitutive expression of reporter genes than the maize Ubi-1 promoter. The rubi3 5'-UTR intron mediated enhancement on the activity of its promoter in a tissue-specific manner but did not alter its overall expression pattern. The enhancement was particularly intense in roots, pollen grains, inner tissue of ovaries, and embryos and aleurone layers in maturing seeds. The translational fusion of the first 27 bp of the rubi3 coding sequence to GUS gene further enhanced GUS expression directed by the rubi3 promoter in all the tissues examined. The rubi3 promoter should be an important addition to the arsenal of strong and constitutive promoters for monocot transformation and biotechnology.  相似文献   

7.
8.
The presence of expansins was investigated in various developmental and ripening stages of cherry fruits by SDS-PAGE and immunoblotting. An expansin gene and three fragments (242, 607 and 929 bp) of its promoter region were cloned. The genomic clone of the expansin gene contained three introns, two exons spanning a 1.6 and a 1.0 kb upstream region. Semi-quantitative PCR analysis showed that this gene was ripening specific. Chimeric promoter—GUS constructs were made and truncated forms of the expansin promoter were introduced into tomatoes by agroinjection and fruits were analyzed for GUS expression by histochemical GUS staining and enzyme activity assays. The 0.60 kb expansin promoter efficiently induced GUS expression in transgenic tomatoes, whereas constructs with the 0.25 kb promoter did not display significant GUS staining. The highest GUS activity was detected in tomatoes containing the 1.0 kb promoter construct. Both large base pair promoter constructs drove the expression of the GUS gene at an equal or higher rate than the tomato E8 promoter.  相似文献   

9.
The promoter of the potato (Solanum tuberosum L.) SK2 gene, encoding a pistil-specific basic endochitinase, was cloned. Various fragments of the SK2-promoter, from 1 kb down to 0.23 kb in length, were fused to the GUS reporter gene. Chimaeric SK2 promoter-GUS fusion constructs were transformed into potato by Agrobacterium tumefaciens-mediated transformation. The SK2-GUS transgenic potato plants exhibited a highly specific GUS activity in the pistil. Expression in the pistil was shown to be developmentally regulated. In addition to the GUS activity in pistils, transgenic plants also showed a much weaker ectopic expression in anthers. In other tissues no systematic expression was detectable. All SK2 promoter fragments analysed conferred pistil-specific expression without significant qualitative or quantitative differences, demonstrating that the regulatory elements mediating this expression pattern are located within a 230 bp SK2 promoter fragment. The SK2 promoter may be used to engineer high levels of expression in pistils of transgenic plants.  相似文献   

10.
There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) in Arabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5' region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants by Agrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5' coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5' coding region of PAI1 or PAI3 was 60—100-fold higher than that without the corresponding 5' region. However, the effect of 5' coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by t  相似文献   

11.
12.
陈豫  曲乐庆  贾旭 《遗传学报》2004,31(3):281-286
为了研究谷蛋白胚乳特异性表达启动子在我国栽培稻品种中的表达模式,将UidA基因分别置于水稻谷蛋白GluA—2基因750bp和2.3kb上游序列下游,利用农杆菌转化法导人栽培稻品种中花8号并获得转基因植株。Southern blot检测表明,UidA基因已经整合到水稻基因组当中并以单拷贝存在。Northern blot检测表明,开花后13~15d和11~13d,UidA基因和水稻内源的GluA—2基因的表达量分别达到最高,随后逐渐降低。对转基因植株种子的GUS染色表明,UidA基因仅在胚乳中表达,在糊粉层中GUS表达量最高。测定了2.3kb和750bp转基因植株种子的GUS活性,结果表明前者的GUS活性是后者的2~3倍。序列分析表明,位于GluA—2基因转录启始位点上游2170bD的G-box可能是一个与表达量相关的顺式调控元件。  相似文献   

13.
14.
15.
An HD‐Zip IV gene from wheat, TaGL9, was isolated using a Y1H screen of a cDNA library prepared from developing wheat grain. TaGL9 has an amino acid sequence distinct from other reported members of the HD‐Zip IV family. The 3′ untranslated region of TaGL9 was used as a probe to isolate a genomic clone of the TaGL9 homologue from a BAC library prepared from Triticum durum L. cv. Langdon. The full‐length gene containing a 3‐kb‐long promoter region was designated TdGL9H1. Spatial and temporal activity of TdGL9H1 was examined using promoter‐GUS fusion constructs in transgenic wheat, barley and rice plants. Whole‐mount and histochemical GUS staining patterns revealed grain‐specific expression of TdGL9H1. GUS expression was initially observed between 3 and 8 days after pollination (DAP) in embryos at the globular stage and adjacent to the embryo fraction of the endosperm. Expression was strongest in the outer cell layer of the embryo. In developed wheat and barley embryos, strong activity of the promoter was only detected in the main vascular bundle of the scutellum, which is known to be responsible for the uptake of nutrients from the endosperm during germination and the endosperm‐dependent phase of seedling development. Furthermore, this pattern of GUS staining was observed in dry seeds several weeks after harvesting but quickly disappeared during imbibition. The promoter of this gene could be a useful tool for engineering of early seedling vigour and protecting the endosperm to embryo axis pathway from pathogens during grain desiccation and storage.  相似文献   

16.
香蕉果实成熟相关基因ACO1启动子区的克隆及其功能初探   总被引:9,自引:1,他引:9  
根据已报道的香蕉课实表达ACC氧化酶基因(ACO1)的序列,用改进的接头连接PCR法从香蕉基因组中扩增并克隆了此基因5′旁侧区1526bp的片段,其中包含一个推测的TATA盒序列;与已公布的两个香蕉ACC氧化酶基因启动子序列(分别为934bp和1451bp)的相似性各为97.3%(Lopez-Gomez等)和88.8%(May和Kipp)。将4个含有不同大小启动子区的克隆片段与GUS基因编码区连接构建成嵌合成基因,通过基因枪轰击转入香蕉叶、根和果实的细胞后,瞬时表达结果表明不同大小的ACO1启动子区段都只在果实细胞中指导GUS基因表达,证明该启动子具有指导基因在果实中表达的功能,并推测负责果实特异性的顺式元件可能位于启动子近端0.7kb区段之内,在468至822的355bp区段内可能在与正控制有关的顺式元件。  相似文献   

17.
A promoter fusion (Sh35) combining upstream regulatory regions from the maize Sh1 promoter with a truncated 35S promoter, Δ9035 (–90 to +8) has been compared with the original Sh1 promoter for its capacity to promote expression of the β-glucuronidase (GUS) gene in stably transformed tomato plants. For both promoters, very faint GUS expression was detected in the vegetative tissues, and no expression was detected in the fruit pericarp tissues. However, in the seed, Sh1 promoted low GUS expression but Sh35 directed 25-fold higher GUS expression. For both constructs, the profile of GUS expression was similar to that of endogenous sucrose synthase activity, but maximal GUS activity was reached 15 days after the peak of sucrose synthase activity. Received: 20 October 1998 / Revision received: 1 December 1998 / Accepted: 14 December 1998  相似文献   

18.
三酰基甘油脂肪酶(SDP1)是催化三酰甘油降解的关键酶,在植物油脂代谢调控中起着重要作用。克隆棉花SDP1并研究其在3种胁迫下的表达分析,为解析棉花SDP1的生物学功能提供依据。以陆地棉品种冀丰1271为试材,克隆GhSDP1编码序列和上游启动子序列;利用PlantCARE分析GhSDP1启动子区顺式作用元件;qRT-PCR检测逆境胁迫下GhSDP1的表达谱;通过烟草瞬时表达pGhSDP1启动子+GUS载体检测启动子活性。结果表明,GhSDP1的编码序列为2 541 bp,其在盐、低温和干旱胁迫下呈差异表达模式。pGhSDP1除具有启动子所必需的TATA-box和CAAT-box等基本顺式作用元件外,还含有多个与光响应、激素响应及逆境应答等相关的顺式作用元件。棉花pGhSDP1启动子能驱动GUS蛋白高效表达,具有较强的启动子活性。研究揭示了棉花GhSDP1参与胁迫应答的新功能。  相似文献   

19.
There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) inArabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5′ region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants byAgrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5′ coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5′ coding region of PAH or PAI3 was 60–100-fold higher than that without the corresponding 5′ region. However, the effect of 5’ coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by the 5′ region of PAI genes have the function of PTP.  相似文献   

20.
Two nuclear genes, F1 delta-1 and F1 delta-2, coding for the delta-subunit of mitochondrial F1-ATP synthase, which corresponds to oligomycin-sensitivity conferring protein in animal and yeast mitochondria, were isolated from sweet potato. The gene for the delta-subunit was composed of 6 exons and these two genes shared high sequence similarities to each other not only in exons but also in introns and in the 5'-upstream regions. However, the 5'-upstream regions of F1 delta-1 and F1 delta-2 were distinguishable by the presence of novel sequences, designated Ins-1 and Ins-2, respectively. Ins-1 and Ins-2 contained a terminal direct repeat of 10 bp and 12 bp, respectively, and various forms of repeat sequences. The promoter fusion of both F1 delta-1 and F1 delta-2 with the GUS coding sequence gave expression of GUS activity in transformed tobacco BY-2 cells, although the levels of GUS activity and the patterns of expression during the growth of cells were different between the two. In transgenic tobacco plants, the two fusion genes showed similar levels of expression in leaves and stems, while F1 delta-2:GUS gave significantly higher levels of expression in roots than F1 delta-1:GUS. Deletion of Ins-1 from the 5'-upstream region of F1 delta-1:GUS did not affect the expression of the fusion gene in various organs of transgenic plants. However, it caused significant enhancement of expression in transformed tobacco BY-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号