首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The family B DNA polymerase gene from the euryarchaeon Thermococcus waiotapuensis (Twa) contains an open reading frame of 4404 bases that encodes 1467 amino acid residues. The gene is split by two intein-coding sequences that forms a continuous open reading frame with the three polymerase exteins. Twa DNA polymerase genes with (whole gene) and without (genetically intein-spliced) inteins were expressed in Escherichia coli Rosetta(DE3)pLysS. The inteins of the expressed whole gene were easily spliced during purification. The molecular mass of the purified Twa DNA polymerase was about 90 kDa, as estimated by SDS-PAGE. The optimal pH for Twa DNA polymerase activity was 6.0 and the optimal temperature was 75 °C. The enzyme was activated by magnesium ions. The half-life of the enzyme at 99 °C was about 4 h. The optimal buffer for PCR with Twa DNA polymerase was 50 mM Tris–HCl (pH 8.2), 2.0 mM MgCl2, 30 mM KCl, 2.0 mM (NH4)2SO4, 0.01% Triton X-100, and 0.005% BSA. The PCR fidelity of Twa DNA polymerase was higher than Pfu, KOD and Vent DNA polymerases. A ratio of 15:1 Taq:Twa DNA polymerase efficiently facilitated long-range PCR.  相似文献   

2.
The family B DNA polymerase gene of Thermococcus thioreducens, an archaeon recently isolated from the Rainbow hydrothermal vent field, was cloned and its protein product expressed, purified and characterized. The gene was found to encode a 1,311 amino acid chain including an intein sequence of 537 residues. Phylogenetic analysis revealed a predominantly vertical type of inheritance of the intein in the Thermococcales order. Primary sequence analysis of the mature protein (TthiPolB) showed significant sequence conservation among DNA polymerases in this family. The structural fold of TthiPolB was predicted against the known crystallographic structure of a family B DNA polymerase from Thermococcus gorgonarius, allowing regional domain assignments within the TthiPolB sequence. The recombinant TthiPolB was overexpressed in Escherichia coli and purified for biochemical characterization. Compared with other DNA polymerases from the Thermococcales order, TthiPolB was found to have moderate thermal stability and fidelity, and a high extension rate, consistent with an extremely low K m corresponding to the dNTP substrate. TthiPolB performed remarkably well in a wide range of PCR conditions, being faster, more stable and more accurate than many commonly used enzymes.  相似文献   

3.
The family B DNA polymerase gene was amplified from Thermococcus celer genomic DNA by using the degenerate primers and DNA walking PCR. The Tce DNA polymerase gene was cloned and sequenced. The gene contains an ORF of 2,325 bp encoding 774 amino acid residues with a calculated molecular weight of 89,788.9 kDa. The Tce DNA polymerase was purified by heat treatment and heparin column chromatography. The optimal conditions for PCR were determined. Long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tce DNA polymerases (Tce plus DNA polymerase). Tce plus DNA polymerase surpassed the PCR performance of Tce, Taq and Pfu DNA polymerases in terms of yield and efficiency.  相似文献   

4.
The gene for a thermostable β-agarase from Agarivorans sp. JA-1 was cloned and sequenced. It comprised an open reading frame of 2,988 base pairs, which encode a protein of 109,450 daltons consisting of 995 amino acid residues. A comparison of the entire sequence showed that the enzyme has 98.8% sequence similarities to β-agarase from Vibrio sp. JT1070, indicating that it belongs to the family glycoside hydrolase (GH)-50. The gene corresponding to a mature protein of 976 amino acids was inserted and expressed in Escherichia coli. The recombinant β-agarase was purified to homogeneity. It had maximal activity at 40°C and pH 8.0 in the presence of 1 mM NaCl and 1 mM CaCl2. The enzyme hydrolyzed agarose as well as neoagarohexaose and neoagarotetraose to yield neoagarobiose as the main product. Thus, the enzyme would be useful for the industrial production of neoagarobiose.  相似文献   

5.
The gene encoding Thermococcus guaymasensis DNA polymerase (Tgu DNA polymerase) was cloned and sequenced. The 2328 bp Tgu DNA polymerase gene encoded a 775 amino acid residue protein. Alignment of the entire amino acid sequence revealed a high degree of sequence homology between Tgu DNA polymerase and other archaeal family B DNA polymerases. The Tgu DNA polymerase gene was expressed under the control of the T7lac promoter on pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was then purified by heat treatment followed by two steps of chromatography. The optimum pH and temperature were 7.5 and 80 °C, respectively. The optimal buffer for PCR with Tgu DNA polymerase consisted of 50 mM Tris–HCl (pH 8.2), 4 mM MgCl2, 50 mM KCl, and 0.02% Triton X-100. Tgu DNA polymerase revealed 4-fold higher fidelity (3.17 × 10?6) than Taq DNA polymerase (12.13 × 10?6) and a faster amplification rate than Taq and Pfu DNA polymerases. Tgu DNA polymerase had an extension rate of 30 bases/s and a processivity of 150 nucleotides (nt). Thus, Tgu DNA polymerase has some faster elongation rate and a higher processivity than Pfu DNA polymerase. Use of different ratios of Taq and Tgu DNA polymerases determined that a ratio of 4:1 efficiently facilitated long PCR (approximately 15 kb) and a 3-fold lower error rate (4.44 × 10?6) than Taq DNA polymerase.  相似文献   

6.
Genomic analysis of the hyperthermophilic archaeon Thermococcus onnurineus NA1 (TNA1) revealed the presence of a 471-bp open reading frame with 93% similarity to the dUTPase from Pyrococcus furiosus. The dUTPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dUTP at about a 10-fold higher rate than dCTP. The protein behaved as a dimer in gel filtration chromatography, even though it contains five motifs that are conserved in all homotrimeric dUTPases. The dUTPase showed optimum activity at 80°C and pH 8.0, and it was highly thermostable with a half-life (t 1/2) of 170 min at 95°C. The enzymatic activity of the dUTPase was largely unaffected by variations in MgCl2, KCl, (NH4)2SO4, and Triton X-100 concentrations, although it was reduced by bovine serum albumin. Addition of the dUTPase to polymerase chain reactions (PCRs) run with TNA1 DNA polymerase significantly increased product yield, overcoming the inhibitory effect of dUTP. Further, addition of the dUTPase allowed PCR amplification of targets up to 15 kb in length using TNA1 DNA polymerase. This enzyme also improved the PCR efficiency of other archaeal family B type DNA polymerases, including Pfu and KOD.  相似文献   

7.
A new deoC gene encoding deoxyribose 5-phosphate aldolase (DERA) was identified in Yersinia sp. EA015 isolated from soil. The DERA gene had an open reading frame (ORF) of 672 base pairs encoding 223 amino acids to yield a protein of molecular mass 24.8 kDa. The amino acid sequence was 94% identical to that of DERA from Yersinia intermedia ATCC 29909. DERA was over-expressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The specific activity was 137 μmol/min/mg. The Michaelis constant (km value) of DERA was 9.1 mM. DERA was optimally active at pH 6.0 and 50 °C. DERA was tolerant to a high concentration (300 mM) of acetaldehyde.  相似文献   

8.
A cDNA clone for the extrinsic 30 kDa protein (OEC30) of photosystem II in Euglena gracilis Z was isolated and characterized. The open reading frame of the cDNA encoded a polypeptide of 338 amino acids, which consisted of a long presequence of 93 amino acids and a mature polypeptide of 245 amino acids. Two hydrophobic domains were identified in the presequence, in contrast to the presence of a single hydrophobic domain in the presequence of the corresponding proteins from higher plants. At the N- and C-terminal regions, respectively, of the presequence, a signal-peptide-like sequence and a thylakoid-transfer domain were identified. The presence of a long and unique presequence in the precursor to OEC30 is probably related to the complexity of the intracellular processes required for the synthesis and/or transport of the protein in Euglena.Abbreviations ER endoplasmic reticulum - cDNA complementary DNA - SSU small subunit; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase - Rubico, ribulose 1,5 bisphosphate carboxylase/oxygenase - LHC II light-harvesting chlorophyll protein of photosystem II - PS II photosystem II - OEC30 the extrinsic 30 kDa protein of photosystem II in Euglena - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - TE a solution containing 10 mM Tris-HCl and 1 mM EDTA pH 8.0 - SSPE a solution containing 0.15 M NaCl, 10 mM NaH2PO4 and 1 mM EDTA pH 7.4 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PVDF poly(vinylidene difluoride)  相似文献   

9.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The family B DNA polymerase gene from the euryarchaeon Thermococcus barophilus Ch5 (Tba5) contains an open reading frame of 6198 base pairs that encodes 2065 amino acid residues. The gene is split by three inteins that must be spliced out to form the mature DNA polymerase. A Tba5 DNA polymerase gene without inteins (genetically intein-spliced) was expressed under the control of the pET-28b(+)T7lac promoter in E. coli Rosetta 2(DE3)pLysS cells. The molecular mass of the purified Tba5 DNA polymerase was about 90 kDa consistent with the 90,470 Da molecular mass calculated based on the 776 amino acid sequence. The optimal pH for Tba5 DNA polymerase activity was 7.5 and the optimal temperature was 70–75 °C. The enzyme possessed 3′  5′ exonuclease activity and was activated by magnesium ions. PCR amplification using Tba5 DNA polymerase enables high-yield for 1- to 6-kb target DNA products, while 8- to 10-kb target DNA products were amplified at low or inefficient levels. To simultaneously improve product yield and amplification fidelity, Tba5 plus DNA polymerase mixtures were constituted with various amounts of Tba5 DNA polymerase mixed with Taq DNA polymerase. The Tba5 plus DNA polymerase mixtures robustly amplified up to 25-kb λ DNA fragments. In addition, the PCR error rate of Tba5 plus3 and Tba5 plus4 mixtures were much lower than those of wild-type Tba5 DNA polymerase, Pfu DNA polymerase, Taq DNA polymerase, and Pfu plus DNA polymerase.  相似文献   

11.
The endochitinase DNA and cDNA from Trichoderma sp. were cloned, sequenced and expressed. The cloned DNA and cDNA sequences were 1,476 and 1,275 bp in length, respectively. There were three introns in DNA sequence in comparison with the cDNA sequence. The endochitinase protein contained three regions: the signal peptide, the prepro-region and the mature protein region. The gene fragment encoding the mature endochitinase was ligated into the expression vector pET-28a+, yielding pET-1. The plasmid pET-1 was transformed into the Escherichia coli BL21 (DE3). The clone bearing pET-1 was picked and cultured at 30°C for the expression of endochitinase. SDS-PAGE analysis showed that the endochitinase was expressed in the periplasmic space and the purified protein showed a single band. The activity of 70.2 U/mg was obtained from the cellular extract of the recombinant strain. The activity of endochitinase was 2.5-fold higher at 24 h than at 16 h in the periplasmic space. The optimal pH and temperature of the recombinant endochitinase were determined to be 7.0 and 35°C, respectively. It was relatively stable within the pH range of 5–8. Significant activity stimulation by 1 mM Mg2+ and 5 mM Fe2+ and inhibition by 5 mM Co2+ and 5 mM Hg2+ were observed. The kinetic constants Km, Vmax and Kcat for the hydrolysis of the colloidal chitin were 1.5 mM, 1.37 μmol min−1 and 6.23 min−1, respectively.  相似文献   

12.
In this study, the gene encoding Bacillus sp. HJ171 uracil-DNA glycosylase (Bsp HJ171 UDG) was cloned and sequenced. The Bsp HJ171 UDG gene consists of a 738-bp DNA sequence, which encodes for a protein that is 245-amino-acid residues in length. The deduced amino acid sequence of the Bsp HJ171 UDG had a high sequence similarity with other bacterial UDGs. The molecular mass of the protein derived from this amino acid sequence was 27.218 kDa. The Bsp HJ171 UDG gene was expressed under the control of a T7lac promoter in the pTYB1 plasmid in Escherichia coli BL21 (DE3). The expressed enzyme was purified in one step using the Intein Mediated Purification with an Affinity Chitin-binding Tag purification system. The optimal temperature range, pH, NaCl concentration, and KCl concentration of the purified enzyme was 20–25°C, 8.0, 25 and 25 mM, respectively. The half-life of the enzyme at 40°C and 50°C were approximately 131 and 45 s, respectively. These heat-labile characteristics enabled Bsp HJ171 UDG to control carry-over contamination in the polymerase chain reaction product (PCR) without losing the PCR product. G.A. Kim and M.S. Lee contributed equally to this work.  相似文献   

13.
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.  相似文献   

14.
The gene encoding an endo-β-1,4-xylanase from an Indonesian indigenous Bacillus licheniformis strain I5 was amplified using PCR, cloned, and expressed in Escherichia coli. The nucleotide sequence of a 642 bp DNA fragment was determined, revealing one open reading frame that encoded a xylanase. Based on the nucleotide sequence, calculated molecular mass of the enzyme was 23 kDa. This xylanase has a predicted typical putative signal peptide; however, in E. coli, the active protein was located mainly in intracellular form. Neither culture supernatant of recombinant E. coli nor periplasmic fraction has significantly detectable xylanase activity. The deduced amino acid of the gene has 91% identity with that of Bacillus subtilis endoxylanase. Optimal activity of the recombinant enzyme was at pH 7 and 50°C  相似文献   

15.
The Thermococcus celericrescens (Tcel) DNA polymerase gene, which contains a 2328-bp open reading frame that encodes 775 amino acid residues, was expressed in the Escherichia coli strain Rosetta(DE3)pLysS. The expressed enzyme was purified through heat treatment, HisTrap™ HP column chromatography and then HiTrap™ SP HP column chromatography. Tcel DNA polymerase has poor thermostability and PCR efficiency compared to those of other family B DNA polymerases. To improve thermostability and PCR efficiency, mutant Tcel DNA polymerases were created via site-directed mutagenesis. Specifically, we targeted the A752 residue for enhanced thermostability and the N213 residue for improved PCR efficiency. The mutant Tcel DNA polymerases all showed enhanced PCR efficiency and thermostability compared to those of the wild-type Tcel DNA polymerase. Specifically, the double mutant TcelA752K/N213D DNA polymerase had an approximately three-fold increase in thermostability over that of the wild-type enzyme and amplified a long 10-kb PCR product in an extension time of 2 min. However, there was a small change in the 3′ → 5′ exonuclease activity compared with that of the wild-type Tcel DNA polymerase, even though the mutation is in the ExoII motif. The double mutant TcelA752K/N213D DNA polymerase had a 2.6-fold lower error rate compared to that of Taq DNA polymerase. It seems that the double mutant TcelA752K/N213D DNA polymerase can be used in LA (long and accurate) PCR.  相似文献   

16.
17.
Trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde, was purified fromMethylophaga sp. strain SK1. The active TMADH was purified 12.3-fold through three purification steps. The optimal pH and temperature for enzyme activity was determined to be 8.5 and 55°C, respectively. TheV max andK m values were 7.9 nmol/min/mg protein and 1.5 mM. A genomic DNA of 2,983 bp fromMethylophaga sp. strain SK1 was cloned, and DNA sequencing revealed the open reading frame (ORF) of the gene coding for TMADH. The ORF contained 728 amino acids with extensive identity (82%) to that ofMethylophilus methylotrophus W3A1.  相似文献   

18.
A gene encoding endochitinase from Trichoderma virens UKM-1 was cloned and expressed in E. coli BL21 (DE3). Both the endochitinase gene and its cDNA sequences were obtained. The endochitinase gene encodes 430 amino acids from an open reading frame comprising of 1,690 bp nucleotide sequence with three introns. The endochitinase was expressed as soluble and active enzyme at 20°C when induced with 1 mM IPTG. Maximum activity was observed at 4 h of post-induction time. SDS-PAGE showed that the purified endochitinase exhibited a single band with molecular weight of 42 kDa. Biochemical characterization of the enzyme displayed a near neutral pH characteristic with an optimum pH at 6.0 and optimum temperature at 50°C. The enzyme is stable between pH 3.0–7.0 and is able to retain its activity from 30 to 60°C. The presence of Mg2+ and Ca2+ ions increased the enzyme activity up to 20%. The purified enzyme has a strong affinity towards colloidal chitin and low effect on ethyl cellulose and D-cellubiose which are non-chitin related substrates. HPLC analysis from the chitin hydrolysis showed the release of (GlcNAc)3, (GlcNAc)2 and GlcNAc, in which (GlcNAc)2 was the main product.  相似文献   

19.
20.
The malic enzyme-encoding cDNA (GQ372891) from the oleaginous yeast Lipomyces starkeyi AS 2.1560 was isolated, which has an 1719-bp open reading frame flanked by a 290-bp 5′ untranslated sequence and a 92-bp 3′ untranslated sequence. The proposed gene, LsME1, encoded a protein with 572 amino acid residues. The protein presented 58% sequence identity with the malic enzymes from Yarrowia lipolytica CLIB122 and Aspergillus fumigatus Af293. The LsME1 gene was cloned into the vector pMAL-p4x to express a fusion protein (MBP-LsME1) in Escherichia coli TB1. The fusion protein was purified and then cleaved by Factor Xa to give the recombinant LsME1. This purified enzyme took either NAD+ or NADP+ as the coenzyme but preferred NAD+. The K m values for malic acid, NAD+ and NADP+ were 0.85 ± 0.05 mM, 0.34 ± 0.08 mM, and 7.4 ± 0.32 mM, respectively, at pH 7.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号