首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined intracellular and extracellular paralytic shellfish toxins (PST) in a strain of Aphanizomenon sp. (LMECYA31) isolated from a Portuguese freshwater reservoir throughout the growth cycle and under different conditions affected by temperature and nitrate and phosphate availability. PST concentrations and compositions were greatly influenced by cell density, growth stage, and temperature and nutrients conditions. On a per‐cell basis results showed (1) the enhancement of PST cell quota after the end of exponential growth phase in nutrient replete batch cultures, (2) the absence of a PST increment at late growth stages under phosphate limitation, (3) a rise in PST maximum cell quota under nitrate depletion, and (4) the enhancement of toxin production at higher temperatures. The relative proportion of the four toxins detected, neoSTX, dcSTX, STX and GTX5, also changed within and between culture settings. While growing under phosphate rich media cells produced mainly GTX5 and neoSTX, whereas under phosphate limitation the proportion of STX and dcSTX increased substantially with culture age. Large amounts of extracellular toxins were found in the culture medium, increasing during culture time. Extracellular toxin composition in each culture was fairly constant and always similar to the intracellular composition found at late stages of growth. This further supported other research that indicates that PSTs are released to the water through cell lysis, and a significant concentration of PST may be expected to remain in the water upon the collapse of a toxic bloom or after cells removal by water treatment.  相似文献   

2.
A sulfotransferase (ST) specific to N-21 of saxitoxin (STX) and gonyautoxin 2+3 (GTX2+3) designated as N-ST was purified to homogeneity from the cytosolic fraction of clonal-axenic vegetative cells of the toxic dinoflagellate Gymnodinium catenatum Graham GC21V, which causes paralytic shellfish poisoning. The enzyme transferred a sulfate group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to N-21 in the carbamoyl group of STX and GTX2+3 to produce GTX5 and C1+2, respectively. The molecular mass of the purified enzyme was determined by SDS-PAGE to be 59 kDa. Gel filtration chromatography showed a native molecular mass of 65 kDa, indicating that the N-ST is a monomeric enzyme. The N-ST was specific to only N-21 of STX and GTX2+3, and O-22 sulfation was not observed. Moreover, the N-ST was not active toward neo STX and GTX1+4, which differed from STX and GTX2+3, respectively, in only N-1 hydroxylation. When various compounds previously reported to be substrates for STs in other organisms and paralytic shellfish poisoning toxins other than STX and GTX2+3 were added to the reaction mixture, N-ST activity was not decreased. The enzyme required PAPS as the sole source of sulfate. The enzyme was optimally active at pH 6.0 and 25° C, and its activity was enhanced by Mg2 + and Co2 + . The Km values of the N-ST for STX and GTX2+3 were 16.1 μM and 29.8 μM, respectively.  相似文献   

3.
[目的]探究石房蛤毒素(STX)完全抗原制备方法和STX多克隆抗体免疫方案。[方法]通过碳二亚胺法(EDC)和高碘酸盐法(periodate reaction)2种交联方法,将小分子石房蛤毒素与牛血清白蛋白(BSA)、鸡卵清蛋白(OVA)和孔血蓝蛋白(KLH)分别进行交联,制备了6种形式STX完全抗原,并对交联物进行琼脂糖凝胶电泳鉴定和紫外吸收峰迁移变化鉴定。分别将EDC法和高碘酸盐法交联的STX-BSA、STX-KLH 4种完全抗原作为免疫原,对Balb/c小鼠进行免疫,获得STX多克隆抗体。通过间接ELISA法,对不同方法制备的多克隆抗体进行分析比较。[结果]在石房蛤毒素完全抗原的制备中,在交联方法的选择上,EDC法较高碘酸盐法更具优势;而在免疫原的选择上,STX-BSA完全抗原效果最好。[结论]本研究探究了2种制备STX完全抗原的方法,为今后多克隆抗体生产以及特异性单克隆抗体筛选提供数据支撑。  相似文献   

4.
A severe outbreak of Paralytic Shellfish Poisoning (PSP) occurred in Manzanillo and Guayacán, northwestern coast of Margarita Island, Venezuela, between August and October 1991. A bloom of dinoflagellates including Prorocentrum gracile, Gymnodinium catenatum and Alexandrium tamarense seemed to be responsible for this outbreak. Levels of PSP toxins in mussels (Perna perna) exceeded the international safety limit of saxitoxin, 80 microg STX/100 microg meat. PSP toxin values varied between 2548 and 115 microg STX/100 g meat in Manzanillo, and between 1422 and 86 microg STX/100 g meat in Guayacán. At both locations, the highest levels were detected in August, when 24 patients exhibited typical symptoms of PSP toxicity after consuming cooked mussels (16 required hospitalization). A high pressure liquid chromatographic (HPLC) procedure was recently used on the 1991 samples. The major toxin detected in samples of both locations was decarbamoyl saxitoxin (dcSTX), but low concentrations of saxitoxin were also found in Manzanillo samples. Gonyautoxins GTX1, GTX2 and GTX3 were detected only at Guayacán, while in both locations, decarbamoylgonyatouxin (dcGTX2,3) toxins were detected. These findings represent the first time that causative toxins of PSP in Venezuela have been chemically identified, and confirm the presence of dcSTX and dcGTX in mussels from the Caribbean Sea. The presence of dcSTX and dcGTX in shellfish is indicative that Gymnodinium catenatum was a causative organism for outbreak of PSP.  相似文献   

5.
Neosaxitoxin (neoSTX) differs structurally from saxitoxin (STX) in that the hydrogen on N-1 is replaced by a hydroxyl group. On single frog skeletal muscle fibers in the vaseline-gap voltage clamp, the concentrations for reducing the maximum sodium current by 50% (ED50) at pH's 6.50, 7.25, and 8.25 are, respectively, 4.9, 5.1, and 8.9 nM for STX and 1.6, 2.7, and 17.2 nM for neoSTX. The relative potencies of STX at the different pH's closely parallel the relative abundance of the protonated form of the 7,8,9 guanidinium function, but the relative potencies of neoSTX at the same pH's vary with the relative abundance of the deprotonated N-1 group. In constant-ratio mixtures of the two toxins, the observed ED50's are consistent with the notion that the two toxins compete for the same site. At pH's 6.50 and 7.25, the best agreement between observed and computed values is obtained when the efficacy term (epsilon) for either toxin is 1. At pH 8.25 the best agreement is obtained if the efficacy is 1 for STX but 0.75 for neo-STX. The marked pH dependence of the actions of neoSTX probably reflects the presence of a site in the receptor that interacts with the N-1 -OH, in addition to those interacting with the 7,8,9 guanidinium and the C-12 hydroxyl groups. Considering the three-dimensional structure of the STX and neoSTX molecules, the various site points are probably located in a fold or a crevice of the channel protein, where the extracellular orifice of the sodium channel is located.  相似文献   

6.
Hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method was validated with algal samples for verification and quantification of saxitoxin (STX), a potent neurotoxin which is listed in the Chemical Weapons Convention (CWC) in Schedule 1A. Isocratic elution, conventional bore HILIC column and high flow rate together with accurate post-column splitter provided detection of STX in 6.5 min with total analysis time of 9 min per sample. STX analogue, gonyautoxin 1 (GTX 1) was used as an internal standard. Sample preparation of freeze-dried algae included liquid extraction and centrifugal filtering with mean recovery of 99.9% at concentration level of 10 ng/ml (n=3). Retention times for STX and GTX 1 were 6.47±0.03 min and 4.44±0.01 min (n=45), respectively. Four diagnostic product ions were used for reliable verification of saxitoxin. Method was found to be precise and linear (R(2)=0.9714 and R(2)=0.9768) in concentration ranges of 5-50 ng/ml and 25-200 ng/ml, respectively. For saxitoxin, calculated LOD was 3 ng/ml and LLOQ 11 ng/ml. Validation was conducted using spiked algal matrix since this method is not only needed for verification analysis for the CWC but also for safety analysis of other environmental samples for presence of STX. Identification criteria for verification of STX with HILIC-MS/MS method are discussed.  相似文献   

7.
The toxins associated with paralytic shellfish poisoning (PSP) are potent neurotoxins produced by natural populations of the marine dinoflagellate Alexandrium tamarense. In early June 2000, a massive bloom (>7×105 cells l−1) of this dinoflagellate coincided with an unusually high mortality of farmed salmon in sea cages in southeastern Nova Scotia. Conditions in the water column in the harbour were characterised by the establishment of a sharp pycnocline after salinity stratification due to abundant freshwater runoff. In situ fluorescence revealed a high sub-surface (2–4 m depth) chlorophyll peak related to the plankton bloom. The intense bloom was virtually monospecific and toxicity was clearly related to the concentration of Alexandrium cells in plankton size fractions. Cultured clonal isolates of A. tamarense from the aquaculture sites were very toxic on a per cell basis and yielded a diversity of PSP toxin profiles, some of which were similar to those from plankton concentrates from the natural bloom population. The toxin profile of plankton concentrates from the 21–56 μm size fraction was complex, dominated by the N-sulfocarbamoyl derivative C2, with levels of other PSP toxins GTX4, NEO, GTX5 (=B1), GTX3, GTX1, STX, C1, and GTX2, in decreasing order of relative abundance. Although no PSP toxin was found systemically in the fish tissues (liver, digestive tract) from this salmon kill event, the detection of Alexandrium cells and low levels of PSP toxins in salmon gills provide evidence that the enhanced mortalities were caused by direct exposure to toxic Alexandrium cells and/or to soluble toxins released during the bloom.  相似文献   

8.
In December 2001, a large-scale bloom of the paralytic shellfish toxin-producing dinoflagellate, Alexandrium tamiyavanichii Balech (Dinophyceae) was observed in the Seto Inland Sea, Japan. During the bloom, we conducted a field survey in the Seto Inland Sea and collected samples of bloom water in order to assess the toxicity and toxic components of A. tamiyavanichii. The results of the field survey indicated that A. tamiyavanichii was observed frequently at water temperatures between 17.8 and 20.0 °C, and the maximum cell density at the four localities was ca. 2000 cells L?1 (Fukuyama Bay). To elucidate the toxicity and toxic components of A. tamiyavanichii, 54 strains (28 strains from Fukuyama Bay, 12 strains from Kasato Bay, 9 strains from Uchinoumi, and 5 strains from Inokushi Bay) were established from bloom water samples, and were then subject of toxin analyses via fluorescence HPLC. The toxic components of A. tamiyavanichii showed that N-sulfocarbamoyl (C-) 2 and Gonyautoxins (GTX) 4 were the principal toxins and C3+4, GTX 2+3, GTX 5, neosaxitoxin (neoSTX) and saxitoxin (STX) were minor components. The toxicity of the A. tamiyavanichii cells was higher than that of the other toxic species, A. tamarense and A. catenella. The toxic components in all strains among the four localities were closely related, and thus the recent A. tamiyavanichii population in the Seto Inland Sea appears to originate from a single population.  相似文献   

9.
Occurrence and toxic profiles of paralytic shellfish toxins (PST) in the chocolata clam Megapitaria squalida were investigated. From December 2001 to December 2002, 25 clams were obtained monthly from Bahia de La Paz, Gulf of California. Additionally, net (20 microm) and bottle phytoplankton samples were also collected to identify toxic species. Toxins were analyzed by HPLC with post-column oxidation and fluorescence detection. Toxicity in the clam was low and varied from 0.14 to 5.46 microg/STXeq/100 g. Toxicity was detected in December, March, April, June, and August. Toxin profile was composed mainly by STX, GTX2, GTX3, dcGTX2, dcGTX3, C2, dcSTX and B1. Gymnodinium catenatum was the only PST-producing dinoflagellate identified in the phytoplankton samples throughout the study period. G. catenatum was observed mainly in net samples from December 2001 to December 2002; however, in bottle samples, G. catenatum was only observed in five months. Highest abundance (2600 cells l(-1)) was observed in March and the lowest (160 cells l(-1)) in June. G. catenatum mainly formed two-cell chains and rarely four or eight. The presence of PST in net phytoplankton samples support the fact that G. catenatum is the main source of PST in the clams. This study represents the first report of PST toxins in the chocolata clam from Bahia de La Paz.  相似文献   

10.
The voltage-gated Na+ channel alpha-subunit consists of four homologous domains arranged circumferentially to form the pore. Several neurotoxins, including saxitoxin (STX), block the pore by binding to the outer vestibule of this permeation pathway, which is composed of four pore-forming loops (P-loops), one from each domain. Neosaxitoxin (neoSTX) is a variant of STX that differs only by having an additional hydroxyl group at the N1 position of the 1,2,3 guanidinium (N1-OH). We used this structural variant in mutant cycle experiments to determine interactions of the N1-OH and its guanidinium with the outer vestibule. NeoSTX had a higher affinity for the adult rat skeletal muscle Na+ channel (muI or Scn4a) than for STX (DeltaG approximately = 1.3 kcal/mol). Mutant cycle analysis identified groups that potentially interacted with each other. The N1 toxin site interacted most strongly with muI Asp-400 and Tyr-401. The interaction between the N1-OH of neoSTX and Tyr-401 was attractive (DeltaDeltaG = -1.3 +/- 0.1 kcal/mol), probably with formation of a hydrogen bond. A second possible attractive interaction to Asp-1532 was identified. There was repulsion between Asp-400 and the N1-OH (DeltaDeltaG = 1.4 +/- 0.1 kcal/mol), and kinetic analysis further suggested that the N1-OH was interacting negatively with Asp-400 at the transition state. Changes in pH altered the affinity of neoSTX, as would be expected if the N1-OH site were partially deprotonated. These interactions offer an explanation for most of the difference in blocking efficacy between neoSTX and STX and for the sensitivity of neoSTX to pH. Kinetic analysis suggested significant differences in coupling energies between the transition and the equilibrium, bound states. This is the first report to identify points of interaction between a channel and a non-peptide toxin. This interaction pattern was consistent with previous proposals describing the interactions of STX with the outer vestibule (Lipkind, G. M., and H. A. Fozzard. 1994. Biophys. J. 66:1-13; Penzotti, J. L., G. Lipkind, H. A. Fozzard, and S. C. Dudley, Jr. 1998. Biophys. J. 75:2647-2657).  相似文献   

11.
中国东海和南海有害赤潮高发区麻痹性贝毒素研究   总被引:19,自引:0,他引:19  
用小白鼠生物检测法和高效液相色谱法对采自浙江舟山和广东深圳海域贝类的麻痹性贝毒素进行了调查和分析,结果表明,舟山海域近岸的贝类毒素检出率为14%,染毒的贝类毒素含量不高,低于小白鼠生物检测法的测定范围;深圳近岸贝类毒素检出率为30%以上,华贵栉孔扇贝是主要的染毒贝类,有1个样品毒素含量达5.1Mu·g-1,超出安全食用标准.从深圳大亚湾华贵栉孔扇贝检测出10种麻痹性贝毒素成分,消化腺的主要毒素成分为GTXl+2和GTX5,Cl+2和GTX2+3,而剔除消化腺后其余贝组织的主要成分为neoSTX和GTX5.贝毒素主要积累在扇贝的消化腺内,消化腺含有的毒素是贝肉组织的8倍.  相似文献   

12.
Clonal variability in exponential growth rate and production of secondary metabolites was determined from clonal isolates of Alexandrium tamarense originating from a single geographical population from the east coast of Scotland. To assess variability in the selected phenotypic characteristics over a wide spectrum, 10 clones were chosen for experimentation from 67 clonal isolates pre-screened for their lytic capacity in a standardized bioassay with the cryptophyte Rhodomonas salina. Specific growth rates (μ) of the 10 clonal isolates ranged from 0.28 to 0.46 d−1 and were significantly different among clones. Cell content (fmol cell−1) and composition (mol%) of paralytic shellfish toxins (PSTs), analyzed by liquid chromatography with fluorescence detection (LC–FD), varied widely among these isolates, with total PST quotas ranging from 20 to 89 fmol cell−1. Except for strain 3, the toxins C1/C2, neosaxitoxin (NEO), saxitoxin (STX), and gonyautoxins-1 and -4 (GTX1/GTX4), were consistently the most relatively abundant, with lesser amounts of GTX2/GTX3 evident among all isolates. Only clone 3 contained >20 mol% of toxin B1, with C1/C2, GTX2/GTX3 and NEO in almost equimolar ratios.Eight of the 10 clones caused cell lysis of both R. salina and the heterotrophic dinoflagellate Oxyrrhis marina, as quantified from the dose–response curves from short-term (24 h) co-incubation bioassays. For two clones, no significant mortality even at high Alexandrium cell concentrations (ca. 104 mL−1) was observed. Allelochemical activity expressed as EC50 values, defined as the Alexandrium cell concentration causing lysis of 50% of target cells, varied by about an order of magnitude and was significantly different among clones. No correlation was observed between growth rate und allelochemical potency (as EC50) indicating that at least under non-limiting growth conditions no obvious growth reducing costs are associated with the production of allelochemically active secondary metabolites.  相似文献   

13.
Monoparametric immunoassay tests for detecting botulinum toxins types A and B and multiparametric assays for simultaneous detection of botulinum toxins type A and B have been developed. It is shown that the sensitivity of assays is affected by the size of nanoparticles of colloidal gold used as a marker of antibodies, load intensity of antibodies of colloidal gold in conjugates, the type of analytical membranes, as well as the chemical composition of buffer solutions used for the storage of conjugates and immunoassay analysis. The detection limit of monoparametric immunoassay tests is 0.5 ng/ml; that of multiparametric assays, 5.0 ng/ml. The developed immunoassay can be used for rapid assay of product quality, for grade control of botulinum toxins in pharmaceuticals, and environmental monitoring.  相似文献   

14.
Monoparametric immunoassay tests for detecting botulinum toxins types A and B and multiparametric assays for simultaneous detection of botulinum toxins type A and B have been developed. It is shown that the sensitivity of assays is affected by the size of nanoparticles of colloidal gold used as a marker of antibodies, load intensity of antibodies of colloidal gold in conjugates, the type of analytical membranes, as well as the chemical composition of buffer solutions used for the storage of conjugates and immunoassay analysis. The detection limit of monoparametric immunoassay tests is 0.5 ng/ml; that of multiparametric assays, 5.0 ng/ml. The developed immunoassay can be used for rapid assay of product quality, for grade control of botulinum toxins in pharmaceuticals, and environmental monitoring.  相似文献   

15.
Gymnodinium catenatum Graham is a paralytic shellfish poison (PSP) producer that was described for the first time from the Gulf of California in 1943. During the last decade, its distribution along the Mexican Pacific coastline has increased. In Bahía Concepción, a coastal lagoon on the western side of the Gulf of California, G. catenatum has been linked to significant PSP concentrations found in mollusks. In this study, we describe the saxitoxin profile of 16 strains of G. catenatum, and catarina scallops (Argopecten ventricosus) from Bahía Concepción. Toxins were analyzed by HPLC with post-column oxidation and fluorescence detection. The average toxicity of the G. catenatum strains was 26.0±6.0 pg and 28.0±18.0 pg STX eq/cell after 17 and 22 days of growth, respectively. Ten toxins were recorded, but only dcSTX, dcGTX2, dcGTX3, C1, and C2 were always present in all strains at both growth stages. Since toxin profiles in scallops were similar to the cultures, biotransformations are not significant in catarina scallop. NeoSTX, GTX2, GTX3, and B2 were present in some G. catenatum strains and their presence varied with the age of the culture. In scallop samples, dcSTX, dcGTX2, and dcGTX3 were the most abundant toxins, and from the C-toxin group, only C2 was found. This unique toxin profile can be used as a biomarker for this population, when compared with strains of G. catenatum from other geographic regions.  相似文献   

16.
Contamination of shellfish with paralytic shellfish poisoning (PSP) toxins produced by Alexandrium species poses a potential threat to the sustainability of the Scottish aquaculture industry. Routine LM analysis of water samples from around the Scottish coast has previously identified Alexandrium (Dinophyceae) as a regular part of the spring and summer phytoplankton communities in Scottish coastal waters. In this study, Alexandrium tamarense (M. Lebour) Balech isolated from sediment and water samples was established in laboratory culture. Species identification of these isolates was confirmed using thecal plate dissections and by molecular characterization based on their LSU and, in some cases, ITS rDNA sequence. Molecular characterization and phylogenetic analysis showed the presence of two ribotypes of A. tamarense: Group I (North American ribotype) and Group III (Western European ribotype). Assessment of PSP toxin production using hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC–MS/MS) showed that A. tamarense Group I produced a complex array of toxins (~2,000 fg STX equivalents · cell?1) with the major toxins being C2, neosaxitoxin (NEO), saxitoxin (STX), gonyautoxin‐4 (GTX‐4), and GTX‐3, while A. tamarense Group III did not produce toxins. Historically, it was considered that all Alexandrium species occurring in Scottish waters produce potent PSP toxins. This study has highlighted the presence of both PSP toxin‐producing and benign species of A. tamarense and questions the ecological significance of this finding.  相似文献   

17.
The potencies of saxitoxin (STX) and of five structurally related toxins were determined by their ability to block impulses at equilibrium in frog sciatic nerve. The order of potency, with values relative to STX potency in parentheses, was: neo-STX (4.5) greater than gonyautoxin (GTX) III (1.4) greater than STX (1.0) greater than GTXII (0.22) greater than 12 alpha-dihydroSTX (0.050) greater than 12 beta-dihydroSTX (0.0014). When equipotent solutions of STX and neo-STX were exchanged, impulses in the treated nerve were transiently overblocked or underblocked, thus kinetically distinguishing neo-STX from STX. Similar phenomena occurred with exchanges of STX and GTXIII. No consistent evidence was found for any blocking activity of STX molecules that were not protonated at the C8 guanidinium, but the pH dependence of STX potency cannot be described simply by the titration of this guanidinium group. The effects of pH and of various substituents on STX potency are accounted for by changes in the molecular forms of STX and by alterations in specific electrical charges on STX and at the receptor. The results support a model in which toxin molecules bind in two steps; initial binding of the C8 guanidinium to an anionic group induces the loss of water from the normally hydrated ketone (at carbon 12), which then forms a weak covalent bond with a nucleophilic group on the receptor.  相似文献   

18.
An assay is described which detects saxitoxin (STX) and tetrodotoxin (TTX) by their competitive displacement of [3H]saxitoxin from its receptor in rat brain membranes. The assay has a sensitivity of 0.15 ng STX/ml and 0.8 ng TTX/ml for buffer samples. The assay was also applied to detection of these toxins in unextracted human plasma and found to have a sensitivity of 0.5 ng STX/ml and 0.6 ng TTX/ml. The competitive displacement assay appears to be the most sensitive procedure yet for detection of STX and TTX.  相似文献   

19.
Octopus (Octopus vulgaris, Cuvier) plays a central role in the marine food web, being an important consumer with high metabolic rates and at the same time an important food item for higher predators. After harmful algal blooms, octopus can accumulate high levels of marine toxins trough trophic interrelationships. The aim of this study is to characterize the distribution of paralytic shellfish toxins (PSTs) in selected tissues of the O. vulgaris, in order to assess the translocation of toxins among organs with different physiological functions. Different retention times and selective elimination of particular toxin analogues were also investigated. Twenty three specimens of O. vulgaris were captured in Peniche (NW coast of Portugal) after PSTs have been detected in molluscan bivalves. Tissue matrices were dissected from organs with digestive function (digestive gland, stomach and salivary glands) and excretory function (kidneys and branchial hearts) and analyzed for toxin determination. Toxin analysis was carried out by high performance liquid chromatography with fluorescence detection (LC-FLD). PSTs were found in all tissues analyzed. The highest toxin concentrations were found in the digestive gland, reaching a maximum of 2980 μg STX equiv. kg−1. The toxin profile was constituted by dcSTX, B1, C1 + 2, dcGTX2 + 3, dcNEO, STX and GTX2 + 3. A lower number of toxins were identified in the remaining organs, with B1 and dcSTX compromising more than 90% in molar fraction. Decarbamoyl saxitoxin was the most abundant toxin detected in digestive gland, stomach and salivary glands, while B1 was dominant in organs with excretory function. A positive correlation of concentrations of B1 and dcSTX were found in the organs analyzed. Results indicate that B1 and dcSTX are assimilated into the digestive gland in a similar proportion. Selective elimination of toxins with higher elimination of B1 and retention of dcSTX is suggested. This study contributes to better understanding of the dynamics of PSTs in O. vulgaris and the fate of PSTs in the food web.  相似文献   

20.
To analyze the genetic system of paralytic shellfish poisoning (PSP) toxin production in the dinoflagellate Alexandrium catenella, we examined toxin compositions and mating type of Fl progenies from crosses between algal strains having different toxin compositions. In all strains used, the mole percentage of their toxin composition did not significantly change in any growth phase, although total toxin levels increased rapidly in the early to middle exponential growth phase and then decreased by 95% in the stationary phase. One parental strain produced gonyautoxin (GTX) 4, and C4, while the other produced neosaxitoxin (neoSTX) and saxitoxin (STX) during all growth phases. Fl progenies showed one parental toxin composition and segregated independently with the mating type. These data suggest that A. catenella is a toxin producer and that Mendelian inheritance of toxin profiles occurs in the heterothallic dinoflagellate A. catenella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号