首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acids newly synthesized by Brevibacterium ammoniagenes grown at different temperatures were analyzed. The assay temperature, not the growth temperature, was found to be the major factor affecting the unsaturated/saturated ratio of newly synthesized fatty acids in logarithmic-phase cells. However, in the stationary-phase cells the growth temperature also affected the product profile significantly; cells grown at 7 degrees C produced relatively more oleate and stearate and less palmitate and hexadecenoate when shifted up to 37 degrees C than did cells grown and assayed at 37 degrees C. The unsaturated/saturated ratio as well as average chain length of fatty acids also varied along with the progress of isothermal growth phase. These changes in fatty acid product profiles observed in vivo could be mimicked in vitro assays of the fatty acid synthetase by changing malonyl-CoA concentrations. Our results suggest that the malonyl-CoA concentration is a factor which, in addition to temperature, determines growth-phase-dependent and growth-temperature-dependent changes in the unsaturated/saturated ratios of fatty acids.  相似文献   

2.
Endogeneous fatty acid biosynthesis in the two yeast species, Saccharomyces cerevisiae and Candida lipolytica is completely repressed by the addition of long-chain fatty acids to the growth medium. In Candida lipolytica, this repression is accompanied by a corresponding loss of fatty acid synthetase activity in the cell homogenate, when the cells were grown on fatty acids as the sole carbon source. The activity of the Saccharomyces cerevisiae fatty acid synthetase, however, remains unaffected by the addition of fatty acids to a glucose-containing growth medium. From fatty-acid-grown Candida lipolytica cells no fatty acid synthetase complex can be isolated, nor is there any immunologically cross-reacting fatty acid synthetase protein detectable in the crude cell extract. From this it is concluded that Candida lipolytica, but not Saccharomyces cerevisiae, is able to adapt to the growth on fatty acids either by repression of fatty acid synthetase biosynthesis or by a fatty-acid-induced proteolytic degradation of the multienzyme complex. Similarly, the fatty acid synthetase complex disappears rapidly from stationary phase Candida lipolytica cells even after growth in fatty-acid-free medium. Finally, it was found that the fatty acid synthetase complexes from Saccharomyces cerevisiae and Candida lipolytica, though very similar in size and subunit composition, were immunologically different and had no common antigenic determinants.  相似文献   

3.
The fatty acid composition of Brevibacterium ammoniagenes was affected by the temperature of growth. As the growth temperature was lowered, the proportion of unsaturated fatty acids increased. The fatty acid synthetase obtained from B. ammoniagense produced oleic acid as well as saturated fatty acids. The ratio of unsaturated to saturated fatty acids synthesized by this enzyme in vitro was dependent on the temperature of the enzyme reaction but not on the growth temperature of B. ammoniagenes from which the enzyme was prepared. These results suggest that the changes of composition in cellular fatty acids reflect the temperature dependence of the fatty acid synthetase.  相似文献   

4.
Fatty acid synthetase (FAS) preparations from Saccharomyces cerevisiae cells grown at either 35 or 10 degrees C produced the same products at different temperatures and showed quite similar temperature-dependencies in Arrhenius plots, with break points at 25 degrees C. This break point does not appear to reflect a phase transition of phospholipids present in the purified FAS preparations but rather is associated with protein conformational changes. S. cerevisiae cells grown at 35 degrees C and then shifted to 10 degrees C produced fatty acids with a shorter average chain length than those fatty acids synthesized at 10 degrees C by cells already adapted to 10 degrees C (hyper response). Acetyl-CoA carboxylase activity was relatively higher in the cells grown at 35 degrees C than in the cells grown at 10 degrees C; moreover, fatty acids with longer average chain lengths were synthesized in vitro at higher malonyl-CoA concentrations, which was consistent with the difference in the average chain lengths of newly synthesized fatty acids in cells grown at 35 and 10 degrees C. However, the activity levels of acetyl-CoA carboxylase and fatty acid synthetase alone did not account for the hyper response phenomena.  相似文献   

5.
Temperature Control of Phospholipid Biosynthesis in Escherichia coli   总被引:22,自引:9,他引:13       下载免费PDF全文
The higher the growth temperature of Escherichia coli cultures the greater is the proportion of saturated fatty acids in the bacterial phospholipids. When fatty acids are exogenously supplied to E. coli, higher growth temperatures will likewise increase the relative incorporation of saturated fatty acids into phospholipids. One of the steps in the utilization of fatty acids for phospholipid biosynthesis is, therefore, temperature-controlled. The temperature effect observed in vivo with mixtures of 3H-oleate and 14C-palmitate is demonstrable in vitro by using mixtures of the coenzyme A derivative of these fatty acids for the acylation of α-glycerol phosphate to lysophosphatidic and phosphatidic acids. In E. coli extracts, the relative rates of transacylation of palmityl and oleyl coenzyme A vary as a function of incubation temperature in a manner which mimics the temperature control observed in vivo. The phosphatidic acid synthesized in vitro shows a striking enrichment of oleate at the β position analogous to the positional specificity observed in phospholipids synthesized in vivo.  相似文献   

6.
When propionyl-CoA was substituted for either acetyl-CoA or butyryl-CoA in the presence of [14C]malonyl-CoA and NADPH, the pure human liver fatty acids synthetase complex synthesized only straight-chain, saturated, 15- and 17-carbon radioactive fatty acids. At optimal concentrations, propionyl-CoA was a better primer of fatty acid synthesis than acetyl-CoA. Methylmalonyl-CoA inhibited the synthetase competitively with respect to malonyl-CoA. The Ki was calculated to be 8.4 muM. These findings provide an in vitro model and offer a direct explanation at the molecular level for some of the abnormal manifestations observed in diseases characterized by increased cellular concentrations of propionyl-CoA and methylmalonyl-CoA.  相似文献   

7.
Translation and characterization of the fatty acid synthetase messenger RNA   总被引:1,自引:0,他引:1  
Fatty acid synthetase messenger RNA was obtained from rat liver polysomal RNA and then injected into Xenopus laevis oocytes. The radioactive fatty acid synthetase protein synthesized in the oocytes was identified by immunoprecipitation with anti-fatty acid synthetase antibody and the immunoprecipitate was then characterized by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel. Co-migration of authentic fatty acid synthetase and the labeled product synthesized in oocytes was observed. Based on sucrose density gradient analysis, the rat liver fatty acid synthetase mRNA has a sedimentation coefficient of approximately 33 S, which agrees with the predicted minimum size necessary to code for the fatty acid synthetase protein. In addition, this mRNA was partially purified with oligo(dT)-cellulose, which indicates that it has a polyadenylate region. The relative in vivo rate of synthesis of fatty acid synthetase and the level of fatty acid synthetase mRNA in liver were also determined during the course of dietary induction of this enzyme. The results indicate that the dietary-induced increase in the level of fatty acid synthetase is probably due to an increased level of the fatty acid synthetase mRNA.  相似文献   

8.
Growth of and fatty acid synthesis in Escherichia coli were inhibited by oxygen at partial pressures above 1 atm and were prevented by exposure to oxygen at 4.2 atm on membranes incubated on a minimal medium. Growth and fatty acid synthesis returned to control rates when cells were removed from hyperoxia to air. The spectrum of fatty acids produced was unchanged by oxygen at pressures which reduced the rate of synthesis. In situ fatty acids were stable to oxygen at pressures which prevented growth and synthesis. Reinitiation of synthesis after complete inhibition in hyperoxia occurred without production of aberrant fatty acids. Fatty acid synthetase specific activity was virtually unchanged, compared with air controls, in cells exposed either to 3.2 or to 15.2 atm of oxygen. The spectrum of fatty acids synthesized by cell-free extracts during incubation in 4.2 atm of oxygen was not different from air-incubated controls. Synthetase assays included added NADPH, acyl carrier protein, mercaptoethanol, and malonyl coenzyme A; hence, damage, other than reversible sulfhydryl oxidation, to the apoenzymes of synthetase was ruled out.  相似文献   

9.
1. Purified cow mammary gland fatty acid synthetase synthesized long-chain unesterified and short-chain esterified fatty acids. 2. A direct relationship was observed between the amount of short-chain products synthesized and the concentration of acetyl-CoA in the incubation medium. 3. The short-chain products were identified as butyryl-CoA and hexanoyl-CoA. 4. Inhibition of the terminating thioester hydrolase of the fatty acid synthetase complex with phenylmethanesulphonyl fluoride did not inhibit the synthesis of short-chain products. 5. It is suggested that the synthesis of short-chain fatty acids involves the reverse of the 'loading' reaction.  相似文献   

10.
Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.  相似文献   

11.
S Smith  D Pasco    S Nandi 《The Biochemical journal》1983,212(1):155-159
Epithelial cells were isolated from the undifferentiated mammary glands of mature virgin female rats, and their lipogenic characteristics were studied. These cells synthesized predominantly medium-chain fatty acids, albeit at a low rate. In contrast, whole tissue from mammary glands of virgin rats synthesized predominantly long-chain fatty acids at a relatively higher rate, indicating that the lipogenic activity is dominated by the adipocyte component of the gland. Enzyme assays revealed that thioesterase II, the enzyme which regulates production of medium-chain fatty acids by the fatty acid synthetase, was present at a high activity in the undifferentiated mammary epithelial cells of virgin rats. Immunohistochemical studies confirmed this observation and showed that the regulatory enzyme was present exclusively in the epithelial cells lining the alveolar and ductal elements of the undifferentiated gland. This study demonstrates that the potential to elaborate tissue-specific medium-chain fatty acids is already expressed in the undifferentiated tissue of virgin rats and is not acquired as a result of the differentiation associated with the lactogenic phase of development. In this species mammary epithelial cells apparently synthesize predominantly medium-chain fatty acids at all stages of development, and only the overall rate of synthesis is increased on induction of the fatty acid synthetase during lactogenesis.  相似文献   

12.
Control of Fatty Acid Synthesis in Bacteria   总被引:12,自引:5,他引:7  
When glycerol-requiring auxotrophs of Bacillus subtilis are deprived of glycerol, the synthesis of fatty acids continues at an apparent rate of 20 to 50% that of supplemented cultures. The newly synthesized fatty acids are not incorporated into phospholipid and accumulate as free fatty acids. These molecules undergo a much more rapid turnover than phospholipid fatty acids, and the rate of turnover is sufficient to indicate that the rate of fatty acid synthesis in glycerol-deprived cultures is similar to that in supplemented ones. The average chain length of the free fatty acids is greater than that of the phospholipid fatty acids. Cells deprived of required amino acids also show a diminution in the apparent rate of fatty acid synthesis; however, in this case, the fatty acids accumulate in phospholipid, and no increase of the free fatty acid fraction is observed. It is argued on the basis of these findings that the control of lipid synthesis does not operate at the level of transacylation but must act on one or more of the reactions of the fatty acid synthetase.  相似文献   

13.
T M Buttke  L O Ingram 《Biochemistry》1978,17(24):5282-5286
Low concentrations of cerulenin inhibit the growth of Escherichia coli by selectively blocking unsaturated fatty acid synthesis. This inhibition was relieved by unsaturated fatty acid supplements alone but not by saturated fatty acid supplements. The utilization of exogenous unsaturated fatty acids to sustain growth in the presence of cerulenin was confirmed by the analysis of bulk lipid composition. The effects of cerulenin on fatty acid synthesis were examined in vivo by pulse labeling with [14C]acetate and in vitro using [14C]malonyl-coenzyme A. In both cases, unsaturated fatty acid synthesis was inhibited by low concentrations of cerulenin with a stimulation of saturated fatty acid synthesis. Using mutant strains deficient in fatty acid synthesis, the effects of cerulenin on beta-ketoacyl-[acyl-carrier-protein] synthetases I and II were examined. Our results indicate that beta-ketoacyl-[acyl-carrier-protein] synthetase I is more sensitive to inhibition by cerulenin than beta-ketoacyl-[acyl-carrier-protein] synthetase II.  相似文献   

14.
A new assay method for fatty acid synthetase using mass fragmentography was described. [2-13C]Malonyl-CoA was chemically synthesized from [2-13C]malonic acid and used as a substrate. The newly synthesized fatty acids were quantitated with a GC-MS instrument after methyl esterification. Monitoring of molecular ions of the newly synthesized fatty acids enabled us to determine the absolute amounts with heptadecanoic acid as an internal standard. Multiple products (14 : 0, 16 : 0, and 18 : 0) were measured individually. Using this technique, we obtained information about production profiles such as that of chain length against incubation temperature and about malonyl-CoA decarboxylation activity in enzyme preparations, and we also confirmed the presence of malonyl-CoA decarboxylation activity even in purified fatty acid synthetase from guinea pig Harderian gland. Compared with the conventional assay methods (spectrophotometric and radioisotopic), this method was more reliable and useful.  相似文献   

15.
The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of fatty acid mobilization, but could contribute to explain the preferential mobilization of some highly unsaturated fatty acids compared with others.  相似文献   

16.
In vitro 1H- and 13C-NMR spectroscopy was used to investigate the effect of ammonia on fatty acid synthesis and composition in cultured astrocytes. Cells were incubated 3 and 24 h with 5 mM ammonia in the presence or absence of the glutamine synthetase inhibitor methionine sulfoximine. An increase of de novo synthesized fatty acids and the glycerol subunit of lipids was observed after 3 h treatment with ammonia (35% and 40% over control, respectively), the initial time point examined. Both parameters further increased significantly to 85% and 60% over control after 24 h ammonia treatment. Three hours incubation with ammonia increased the synthesis of diacylglycerides, while formation of triacylglycerides was decreased (40% over and 15% under control, respectively). The degradation of fatty acids was not affected by ammonia treatment. Furthermore, ammonia caused alterations in the composition of fatty acids, e.g. increased mono- and decreased polyunsaturated fatty acids (85% over and 15% under control concentrations, respectively). The decrease of polyunsaturated fatty acids was even more pronounced in isolated astrocytic mitochondria (39% lower than controls). Our results suggest ammonia-induced abnormalities in astrocytic membranes, which may be related to astrocytic mitochondrial dysfunction in hyperammonemic states. Most of the observed effects of ammonia on fatty acid synthesis and composition were ameliorated when glutamine synthetase was inhibited by methionine sulfoximine, supporting a pathological role of glutamine in ammonia toxicity. This study further emphasizes the importance of investigating the relative contribution of exogenous ammonia, effects of glutamine and of glutamine-derived ammonia on astrocytes and astrocytic mitochondria.  相似文献   

17.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

18.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

19.
The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.  相似文献   

20.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号