首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Plant tagnology     
Transposable elements have been used as an effective mutagen and as a tool to clone tagged genes. Insertion of a transposable element into a gene can lead to loss- or gain-of-function, changes in expression pattern, or can have no effect on gene function at all, depending on whether the insertion took place in coding or non-coding regions of the gene. Cloning transposable elements from different plant species has made them available as a tool for the isolation of tagged genes using homologous or heterologous tagging strategies. Based on these transposons, new elements have been engineered bearing reporter genes that can be used for expression analysis of the tagged gene, or resistance genes that can be used to select for knockout insertions. While many genes have been cloned using transposon tagging following traditional forward genetics strategies, gene cloning has ceased to be the rate-limiting step in the process of determining sequence–function relations in several important plant model species. Large-scale insertion mutagenesis and identification of insertion sites following a reverse genetics strategy appears to be the best method for unravelling the biological role of the thousands of genes with unknown functions identified by genome or expressed sequence tag (EST) sequencing projects. Here we review the progress in forward tagging technologies and discuss reverse genetics strategies and their applications in different model species.  相似文献   

5.
An epitope tag introduced to a gene of interest (GOI) greatly increases the ease of studying cellular proteins. Rapid PCR-based strategies for epitope tagging a protein's C-terminus at its native gene locus are widely used in yeast. C-terminal epitope tagging is not suitable for all proteins, however. Epitope tags fused to the C-terminus can interfere with function of some proteins or can even be removed by C-terminal protein processing. To overcome such problems, proteins can be tagged with epitopes at their amino-termini, but generating yeast strains expressing N-terminal epitope tagged genes under control of the endogenous promoter at the native locus is comparatively more difficult. Strategies to introduce N-terminal epitope tags have been reported previously but often introduce additional sequences other than the epitope tag into the genome. Furthermore, N-terminal tagging of essential genes by current methods requires formation of diploid strains followed by tetrad dissection or expression of an additional copy of the GOI from a plasmid. The strategies described here provide a quick, facile means of epitope tagging the N-terminus of both essential and nonessential genes in a two-step PCR-based procedure. The procedure has the significant advantage of leaving tagged genes under the control of their endogenous promoters, and no additional sequences other than the epitope tag encoding nucleotides are inserted into the genome.  相似文献   

6.
T-DNA标签在植物基因克隆和功能分析中的应用   总被引:1,自引:1,他引:0  
在植物功能基因组学的研究中,插入突变已成为迅速识别和研究标签基因的一个有效遗传工具.本文介绍了T-DNA标签的概念及应用前提,详细论述了T-DNA标签在大规模植物基因功能分析中的应用以及使用启动子和增强子诱捕技术分离时空特异性启动子和表达基因,另外还分析了利用其特殊形式激活标签进行基因克隆和功能分析的优越性,并展望了T-DNA标签的应用前景.  相似文献   

7.
8.
Transferred DNA (T-DNA) tagging is a powerful tool for tagging and in planta characterization of plant genes on a genome-wide scale. An improved promoter tagging vector is described here, which contains the codon-optimized luciferase (luc+) reporter gene 31 bp from the right border of the T-DNA. Compared to the wild-type luciferase gene, this construct provides significantly increased reporter gene expression and a 40 times higher tagging frequency. The utility of the construct is demonstrated in banana, a tropical monocot species, by screening embryogenic cell colonies and regenerated plants with an ultrasensitive charged-coupled device (CCD) camera. The improved vector resulted in a luciferase activation frequency of 2.5% in 19,000 cell colonies screened. Detailed molecular analysis of flanking DNA sequences in a tagged line revealed insertion of the luciferase tag in a novel gene with near-constitutive expression.  相似文献   

9.
This study tested the behavioural effects of tagging subyearling and yearling lingcod Ophiodon elongatus with acoustic telemetry tags in laboratory tanks and in the natural environment (Puget Sound, WA). In the laboratory, tagged individuals showed less movement and feeding behaviour soon after tagging than untagged controls. The effect dissipated after c. 1 week, presumably as the tagged O. elongatus recovered from surgery or adjusted to the presence of the tags. This dissipation enabled a field study that compared early‐tagged individuals with a long recovery period after tagging to recently‐tagged individuals with a short recovery period after tagging. Consistent with findings from the laboratory experiment, recently tagged individuals showed less movement away from three release sites in Puget Sound than early‐tagged individuals. Together, the laboratory and field results provide evidence of temporary tag effects on actual movement in the natural environment and provide a method for testing tag effects in the field. This study suggests that subyearling and yearling O. elongatus should be held for a recovery period before release. If holding after tagging is not an option, then movement data collected during the first week should be interpreted cautiously.  相似文献   

10.
T-DNA标签法是一种以农杆菌介导的遗传转化为基础来创造插入突变体库, 从而高通量地分离和克隆植物功能基因的方法。但由于种种原因, 水稻插入突变体库的利用效率较低。为了提高水稻插入突变体库的利用效率, 结合水稻一个双拷贝T-DNA插入突变体的发现和鉴定研究, 通过特异PCR检测、侧翼序列与目标性状的共分离分析, 在1个双插入位点均为杂合的植株的后代株系中分拆了2个插入事件, 分离出目标性状存在遗传分离且只带有1个插入事件的后代株系, 为后续的共分离检测和基因克隆研究打下了重要的基础。由此产生了对插入突变体库中的非串联多拷贝插入标签系进行研究的一些思路和方法, 提出来与同行商榷。  相似文献   

11.
Improvements in mass spectrometry, sequencing and bioinformatics have generated large datasets of potentially interesting genes. Tagging these proteins can give insights into their function by determining their localization within the cell and enabling interaction partner identification. We recently published a fast and scalable method to generate Trypanosoma brucei cell lines that express a tagged protein from the endogenous locus. The method was based on a plasmid we generated that, when coupled with long primer PCR, can be used to modify a gene to encode a protein tagged at either terminus. This allows the tagging of dozens of trypanosome proteins in parallel, facilitating the large-scale validation of candidate genes of interest. This system can be used to tag proteins for localization (using a fluorescent protein, epitope tag or electron microscopy tag) or biochemistry (using tags for purification, such as the TAP (tandem affinity purification) tag). Here, we describe a protocol to perform the long primer PCR and the electroporation in 96-well plates, with the recovery and selection of transgenic trypanosomes occurring in 24-well plates. With this workflow, hundreds of proteins can be tagged in parallel; this is an order of magnitude improvement to our previous protocol and genome scale tagging is now possible.  相似文献   

12.
Two new transposon-based tagging vectors have been constructed using the gfp marker gene under control of either constitutive or inducible promoters. The two vectors, along with the established pUTminiTn5gfp were used to tag a diesel-degrading Pseudomonas strain. Tagged strains were obtained that were not affected in terms of their growth or ability to use diesel as a carbon source. The transposon tags were stably maintained in the strains without selection and provided visible fluorescence as colonies or single cells in suspension. Tagging did not impede the survival of tagged Pseudomonas aeruginosa GP41B strains in diesel-contaminated soil microcosms. The tagged strains were easily recovered from the microcosms after a 3-month period. The tagging of bacteria with gfp using either native or introduced constitutive/inducible promoters is an effective and easy way to monitor their survival in soil.  相似文献   

13.
14.
Functional analysis of genes from Saccharomyces cerevisiae has been the major goal after determination of genome sequences. Even though several tools for molecular-genetic analyses have been developed, only a limited number of reliable genetic tools are available to support functional assay at protein level. Epitope tagging is a powerful tool for detecting, purifying, and functional studying of proteins. But systematic tagging systems developed with integration vectors are not available. Here, we have constructed a set of integration vectors allowing a translational fusion of interested proteins to the four different epitope tags (HA, Myc, Flag, and GFP). To confirm function and expression of C-terminal-tagged proteins, we used Cdc11, a component of the septin filament that encircles the mother bud neck and consists of five major proteins: Cdc3, Cdc10, Cdc11, Cdc12, and Sep7. The tagged version of Cdc11 expressed under its endogenous promoter was found to be physiologically functional, as evidenced by localization at the neck and suppression of the growth defect associated with the temperature-sensitive mutation of cdc11-6. The expressed proteins were efficiently detected with antibodies against Cdc11 or the epitopes. When immunoprecipitated with anti-Myc antibody, each septin protein tagged with Myc was effectively copurified with other septin components, indicating formation of a stable septin complex. Because the modules of the tags were located under the same array of eighteen restriction sites on integration vectors containing four different markers (HIS3, TRP1, LEU2, or URA3), this tagging system provides efficient multiple tagging and stable expression of a gene of interest.  相似文献   

15.
16.
A polymerase chain reaction (PCR) based procedure for the isolation of genes in transposon or T-DNA tagging approaches has been developed. The method can be generally applied and allows the rapid isolation of putative gene sequences even in the presence of high numbers of insertion sequences. The technique has been used successfully for the isolation of the maize Bx1 gene tagged by a Mutator element.  相似文献   

17.
The efficiency of individual genetic tagging was determined by using passive integrated transponders (PIT) as a comparative conventional tagging method. Fifty-five common dace Leuciscus leuciscus were captured in the wild, PIT tagged and fin clipped (for DNA analysis). Thirty fish were recaptured on three occasions and tissue samples were collected. Using 18 microsatellite loci, 79-94% of the recaptures were correctly assigned. Experience with scoring L. leuciscus microsatellites led to more individuals correctly assigned. Allowing matches that differed by one or two alleles resulted in 100% of all recaptures successfully assigned irrespective of the observer. Reducing the set of loci to five to six loci appropriately selected did not affect the assignment rate, demonstrating that costs can be subsequently reduced. Despite their potential benefits, the application of genetic tags for teleosts has been limited. Here, it was demonstrated that genetic tagging could be applied, and a clear guideline (flowchart) is provided on how this method can be developed for teleosts and other organisms, with subsequent practical applications to ecology, evolutionary biology and conservation management.  相似文献   

18.
A non‐invasive tagging system for individual identification of three‐spined sticklebacks Gasterosteus aculeatus was evaluated. The tags were easily detected via video, and tagged and non‐tagged fish did not differ in terms of growth, activity levels or shoaling behaviour.  相似文献   

19.
Studying gene function in the post-genome era requires methods to localize and inactivate proteins in a standardized fashion in model organisms. While genome-wide gene disruption and over-expression efforts are well on their way to vastly expand the repertoire of Drosophila tools, a complementary method to efficiently and quickly tag proteins expressed under endogenous control does not exist for fruit flies. Here, we describe the development of an efficient procedure to generate protein fusions at either terminus in an endogenous genomic context using recombineering. We demonstrate that the fluorescent protein tagged constructs, expressed under the proper control of regulatory elements, can rescue the respective mutations and enable the detection of proteins in vivo. Furthermore, we also adapted our method for use of the tetracysteine tag that tightly binds the fluorescent membrane-permeable FlAsH ligand. This technology allows us to acutely inactivate any tagged protein expressed under native control using fluorescein-assisted light inactivation and we provide proof of concept by demonstrating that acute loss of clathrin heavy chain function in the fly eye leads to synaptic transmission defects in photoreceptors. Our tagging technology is efficient and versatile, adaptable to any tag desired and paves the way to genome-wide gene tagging in Drosophila.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号