首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The terminal half of the 5' untranslated region (UTR) in the (+)-strand RNA genome of tomato bushy stunt virus was analyzed for possible roles in viral RNA replication. Computer-aided thermodynamic analysis of secondary structure, phylogenetic comparisons for base-pair covariation, and chemical and enzymatic solution structure probing were used to analyze the 78 nucleotide long 5'-terminal sequence. The results indicate that this sequence adopts a branched secondary structure containing a three-helix junction core. The T-shaped domain (TSD) formed by this terminal sequence is closed by a prominent ten base-pair long helix, termed stem 1 (S1). Deletion of either the 5' or 3' segment forming S1 (coordinates 1-10 or 69-78, respectively) in a model subviral RNA replicon, i.e. a prototypical defective interfering (DI) RNA, reduced in vivo accumulation levels of this molecule approximately 20-fold. Compensatory-type mutational analysis of S1 within this replicon revealed a strong correlation between formation of the predicted S1 structure and efficient DI RNA accumulation. RNA decay studies in vivo did not reveal any notable changes in the physical stabilities of DI RNAs containing disrupted S1s, thus implicating RNA replication as the affected process. Further investigation revealed that destabilization of S1 in the (+)-strand was significantly more detrimental to DI RNA accumulation than (-)-strand destabilization, therefore S1-mediated activity likely functions primarily via the (+)-strand. The essential role of S1 in DI RNA accumulation prompted us to examine the 5'-proximal secondary structure of a previously identified mutant DI RNA, RNA B, that lacks the 5' UTR but is still capable of low levels of replication. Mutational analysis of a predicted S1-like element present within a cryptic 5'-terminal TSD confirmed the importance of the former in RNA B accumulation. Collectively, these data support a fundamental role for the TSD, and in particular its S1 subelement, in tombusvirus RNA replication.  相似文献   

3.
4.
Several functions have been attributed to protein binding within the 3'untranslated region (3'UTR) of mRNA, including mRNA localization, stability, and translational repression. Vimentin is an intermediate filament protein whose 3'untranslated sequence is highly conserved between species. In order to identify sequences that might play a role in vimentin mRNA function, we synthesized32P-labeled RNA from different regions of vimentin's 3'UTR and assayed for protein binding with HeLa extracts using band shift assays. Sequences required for binding are contained within a region 61-114 nucleotides downstream of the stop codon, a region which is highly conserved from Xenopus to man. As judged by competition assays, binding is specific. Solution probing studies of 32P-labeled RNA with various nucleases and lead support a complex stem and loop structure for this region. Finally, UV cross-linking of the RNA-protein complex identifies an RNA binding protein of 46 kDa. Fractionation of a HeLa extract on a sizing column suggests that in addition to the 46 kDa protein, larger complexes containing additional protein(s) can be identified. Vimentin mRNA has been shown to be localized to the perinuclear region of the cytoplasm, possibly at sites of intermediate filament assembly. To date, all sequences required for localization of various mRNAs have been confined to the 3'UTR. Therefore, we hypothesize that this region and associated protein(s) might be important for vimentin mRNA function such as in localization.  相似文献   

5.
The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3′ end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4a, H4b, and previously identified hairpins H4, H5, and Pr) and one H-type pseudoknot (Ψ3) within the 3′-terminal 194 nucleotides (nt). In vivo compensatory mutagenesis analyses confirmed the existence of H4a, H4b, Ψ3 and a second pseudoknot (Ψ2) previously identified in a TCV satellite RNA. In-line structure probing of the 194-nt fragment supported the coexistence of H4, H4a, H4b, Ψ3 and a pseudoknot that connects H5 and the 3′ end (Ψ1). Stepwise replacements of TCV elements with the comparable elements from Cardamine chlorotic fleck virus indicated that the complete 142-nt 3′ end, and subsets containing Ψ3, H4a, and H4b or Ψ3, H4a, H4b, H5, and Ψ2, form functional domains for virus accumulation in vivo. A new 3-D molecular modeling protocol (RNA2D3D) predicted that H4a, H4b, H5, Ψ3, and Ψ2 are capable of simultaneous existence and bears some resemblance to a tRNA. The related Japanese iris necrotic ring virus does not have comparable domains. These results provide a framework for determining how interconnected elements participate in processes that require 3′ untranslated region sequences such as translation and replication.  相似文献   

6.
7.
《The Journal of cell biology》1994,127(6):1537-1545
Translational regulation is a key modulator of gene expression in chloroplasts of higher plants and algae. Genetic analysis has shown that translation of chloroplast mRNAs requires nuclear-encoded factors that interact with chloroplastic mRNAs in a message-specific manner. Using site-specific mutations of the chloroplastic psbA mRNA, we show that RNA elements contained within the 5' untranslated region of the mRNA are required for translation. One of these elements is a Shine- Dalgarno consensus sequence, which is necessary for ribosome association and psbA translation. A second element required for high levels of psbA translation is located adjacent to and upstream of the Shine-Dalgarno sequence, and maps to the location on the RNA previously identified as the site of message-specific protein binding. This second element appears to act as a translational attenuator that must be overcome to activate translation. Mutations that affect the secondary structure of these RNA elements greatly reduce the level of psbA translation, suggesting that secondary structure of these RNA elements plays a role in psbA translation. These data suggest a mechanism for translational activation of the chloroplast psbA mRNA in which an RNA element containing the ribosome-binding site is bound by message- specific RNA binding proteins allowing for increased ribosome association and translation initiation. These elements may be involved in the light-regulated translation of the psbA mRNA.  相似文献   

8.
9.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

10.
Vlot AC  Bol JF 《Journal of virology》2003,77(20):11284-11289
The three genomic RNAs of alfalfa mosaic virus each contain a unique 5' untranslated region (5' UTR). Replacement of the 5' UTR of RNA 1 by that of RNA 2 or 3 yielded infectious replicons. The sequence of a putative 5' stem-loop structure in RNA 1 was found to be required for negative-strand RNA synthesis. A similar putative 5' stem-loop structure is present in RNA 2 but not in RNA 3.  相似文献   

11.
The synthesis of plus and minus RNA strands of several RNA viruses requires as a first step the interaction of some viral regulatory sequences with cellular and viral proteins. The dengue 4 virus genome, a single-stranded, positive-polarity RNA, is flanked by two untranslated regions (UTR) located in the 5' and 3' ends. The 3'UTR in the minus-strand RNA [3'UTR (-)] has been thought to function as a promoter for the synthesis of plus-strand RNA. To study the initial interaction between this 3'UTR and cellular and viral proteins, mobility shift assays were performed, and four ribonucleoprotein complexes (I through IV) were formed when uninfected and infected U937 cells (human monocyte cell line) interacted with the 3'UTR (-) of dengue 4 virus. Cross-linking assays with RNAs containing the complete 3'UTR (-) (nucleotides [nt] 101 to 1) or a partial sequence from nt 101 to 45 and nt 44 to 1 resulted in specific binding of some cellular proteins. Supermobility shift and immunoprecipitation assays demonstrated that the La protein forms part of these complexes. To determine the region in the 3' UTR that interacted with the La protein, two deletion mutants were generated. The mutant (del-96), with a deletion of nt 96 to 101, was unable to interact with the La protein, suggesting that La interacted with the 5' portion of the 3'UTR (-). Complex I, which was the main ribonucleoprotein complex formed with the 3'UTR (-) and which had the fastest electrophoretic migration, contained proteins such as calreticulin and protein disulfide isomerase, which constitute important components of the endoplasmic reticulum.  相似文献   

12.
The 3' untranslated region (UTR) of bamboo mosaic potexvirus (BaMV) genomic RNA was found to fold into a series of stem-loop structures including a pseudoknot structure. These structures were demonstrated to be important for viral RNA replication and were believed to be recognized by the replicase (C.-P. Cheng and C.-H. Tsai, J. Mol. Biol. 288:555-565, 1999). Electrophoretic mobility shift and competition assays have now been used to demonstrate that the Escherichia coli-expressed RNA-dependent RNA polymerase domain (Delta 893) derived from BaMV open reading frame 1 could specifically bind to the 3' UTR of BaMV RNA. No competition was observed when bovine liver tRNAs or poly(I)(C) double-stranded homopolymers were used as competitors, and the cucumber mosaic virus 3' UTR was a less efficient competitor. Competition analysis with different regions of the BaMV 3' UTR showed that Delta 893 binds to at least two independent RNA binding sites, stem-loop D and the poly(A) tail. Footprinting analysis revealed that Delta 893 could protect the sequences at loop D containing the potexviral conserved hexamer motif and part of the stem of domain D from chemical cleavage.  相似文献   

13.
14.
15.
16.
Kwon CS  Chung W 《FEBS letters》1999,462(1-2):161-166
The 5' untranslated region (UTR) of cucumber mosaic virus (CMV) RNA 4 confers a highly competitive translational advantage on a heterologous luciferase open reading frame. Here we investigated whether secondary structure in the 5' UTR contributes to this translational advantage. Stabilization of the 5' UTR RNA secondary structure inhibited competitive translational activity. Alteration of a potential single-stranded loop to a stem by substitution mutations greatly inhibited the competitive translational activity. Tobacco plants infected with wild type virus showed a 2.5-fold higher accumulation of maximal coat protein than did plants infected with a loop-mutant virus. Amplification of viral RNA in these plants could not explain the difference in accumulation of coat protein. Phylogenetic comparison showed that potential single-stranded loops of 12-23 nucleotides in length exist widely in subgroups of CMV.  相似文献   

17.
C Alexander  N Faber    P Klaff 《Nucleic acids research》1998,26(10):2265-2272
RNA-binding proteins play a major role in regulating mRNA metabolism in chloroplasts. In this work we characterized two proteins, of 43 and 47 kDa, which bind to the spinach psbA mRNA 5' untranslated region (psbA encoding the D1 protein of photosystem II). The 43 kDa protein, which is present in the stroma and in membranes, co-sediments with a complex of 68S. It was purified, and the N-terminal sequence was determined. Upon homology search it was identified as the chloroplast homologue of the Escherichia coli ribosomal protein S1. The 47 kDa protein, which, in contrast with the 43 kDa protein, sediments with a small sedimentation coefficient, is only detected in the stromal fraction. It is soluble in an uncomplexed form. By deletion analysis, an element within the psbA mRNA 5' untranslated region was identified that is necessary but not sufficient for binding of stromal proteins. The 'central protein binding element' ranges from nucleotide -49 to -9 of the psbA mRNA 5' untranslated region. It comprises the Shine-Dalgarno-like GGAG motif and, 7 nucleotides upstream, an endonucleolytic cleavage site involved in psbA mRNA degradation in vitro . The mechanistic impacts of this region in relation to RNA-binding proteins are discussed.  相似文献   

18.
Luo G  Xin S  Cai Z 《Journal of virology》2003,77(5):3312-3318
Sequences of the untranslated regions at the 5' and 3' ends (5'UTR and 3'UTR) of the hepatitis C virus (HCV) RNA genome are highly conserved and contain cis-acting RNA elements for HCV RNA replication. The HCV 5'UTR consists of two distinct RNA elements, a short 5'-proximal stem-loop RNA element (nucleotides 1 to 43) and a longer element of internal ribosome entry site. To determine the sequence and structural requirements of the 5'-proximal stem-loop RNA element in HCV RNA replication and translation, a mutagenesis analysis was preformed by nucleotide deletions and substitutions. Effects of mutations in the 5'-proximal stem-loop RNA element on HCV RNA replication were determined by using a cell-based HCV replicon replication system. Deletion of the first 20 nucleotides from the 5' end resulted in elimination of cell colony formation. Likewise, disruption of the 5'-proximal stem-loop by nucleotide substitutions abolished the ability of HCV RNA to induce cell colony formation. However, restoration of the 5'-proximal stem-loop by compensatory mutations with different nucleotides rescued the ability of the subgenomic HCV RNA to replicate in Huh7 cells. In addition, deletion and nucleotide substitutions of the 5'-proximal stem-loop structure, including the restored stem-loop by compensatory mutations, all resulted in reduction of translation by two- to fivefold, suggesting that the 5'-proximal stem-loop RNA element also modulates HCV RNA translation. These findings demonstrate that the 5'-proximal stem-loop of the HCV RNA is a cis-acting RNA element that regulates HCV RNA replication and translation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号