首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans. Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

2.
Abstract Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans . Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

3.
Chitin synthase (ED 2.4.1.16) has been characterized in Aspergillus flavus. A K(m) value of 2.5 m(M) was obtained for the substrate UDPGlcNAc. The enzyme had a requirement for GlcNAc, and Mg2+ and activity was increased in the presence of soluble chitodextrins F1 and F2. The optimum activity was obtained using Tris--HCl buffer, pH 7.5, with a secondary peak at pH 6.2 and an incubation temperature of 29.5 degrees C. Distribution patterns of chitin synthase in protoplasts and mycelial material were very similar. The highest specific activity was found in a 200 000 X g fraction. Enzyme levels in growing mycelium increased during the exponential growth phase after which they declined. Activity also increased during the early stages of regeneration of both conidial and mycelial protoplasts, despite an initial lack in net protein synthesis. Chitin synthase levels were also dependent upon the carbon source available during regeneration.  相似文献   

4.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacuolar proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40-110 nm; buoyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100-250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

5.
Chitin synthetase was isolated and purified 120-fold from the supernatant fraction (54,500 X g) of broken yeast cells of Mucor rouxii. The purified preparations consisted mainly of chitin synthetase particles (chitosomes) with an average size larger than 7 X 10(6) daltons (by gel filtration) and an average sedimentation coefficient of 105 S. The samples also contained other enzyme complexes (fatty acid synthetase, pyruvate dehydrogenase, and, depending on method, ribosomes). Nearly all of the chitosomal chitin synthetase occurred in a zymogenic form that required proteolytic activation. In most properties, the chitosomal enzyme was similar to crude enzyme (54,000 X g sediment): kinetics, activation by proteases, response to metals, stimulation by N-acetylglucosamine, and inhibition by polyoxin or UDP. One mamor difference was the much greater stability of the chitosomal chitin synthetase zymogen against spontaneous activation and destruction. Product (chitin microfibril) and enzyme (chitin synthetase) remained associated in a complex that was readily separated by centrifugation.  相似文献   

6.
This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.  相似文献   

7.
Protoplasts isolated from Avena sativa L. leaves undergo progressive senescence when incubated aseptically in 0.6 m mannitol with or without added nutrients. This senescence is manifested by morphological deterioration and ultimate lysis of protoplasts, by a decrease in incorporation of [(3)H]uridine and [(3)H]leucine into macromolecules, and by a sharp increase in ribonuclease activity.The presence in the incubation medium of l-arginine, l-lysine, certain polyamines related to these amino acids (cadaverine, putrescine, spermidine), Ca(2+), or streptomycin stabilizes the protoplasts. Protoplasts incubated with 10 mml-arginine or l-lysine show an initial inhibition of [(3)H]uridine incorporation, but with time, incorporation is restored to levels greater than in control protoplasts. The rise in ribonuclease activity of protoplasts is completely inhibited if the protoplasts are incubated with 10 mml-arginine. Greater incorporation of [(3)H]uridine into RNA of aging protoplasts is also maintained by appropriate concentration of cadaverine, putrescine, spermidine, Ca(2+), or streptomycin in the incubation medium; the same concentrations of these substances stabilize the protoplasts against additional lysis.  相似文献   

8.
Growing conditions have been found out for the bacterium Arthrobacter GJM-I to produce a lytic enzyme system, which converts cells of the yeast Candida spec. H to protoplasts quickly and in a good yield. Estimating the activities of α-mannanase and β-glucanase we found out the optimal culture time to gain the lytic enzyme system from the culture filtrate. It was shown that radioactive labeling of the yeast cells makes it possible to estimate quantitatively the conversion to protoplasts and the simultaneous lysis. The obtained lytic enzyme system can substitute the snail cnzyme system which was used for cell conversion of Candida spec. H to protoplasts till now.  相似文献   

9.
Several lines of evidence establish that the crystallizable aspartyl—tRNA synthetase from Baker's yeast contains some covalently bound glucose: (i) a positive staining of the enzyme was obtained after polyacrylamide gel electrophoresis followed by the concanavalin A-peroxidase test which is specific for glucose and mannose containing proteins; (ii) thin-layer chromatography and gas-liquid chromatography revealed the presence of glucose in enzyme hydrolysates; (iii) immunoaffinoelectrophoresis in agarose gels containing concanavalin A and antibodies raised against aspartyl—tRNA synthetase showed that the enzyme was able to precipitate entirely in the lectin. Finally incubation of the enzyme with [14C]glucose or [14C]glucose 6-phosphate led to the incorporation of radioactivity into trichloroacetic acid-precipitable protein. Indeed immunoprecipitation of [14C]glucose-labelled aspartyl-tRNA synthetase with specific antibodies using the rocket method followed by autoradiography gave a radioactive peak. This last result also demonstrates the possibility of in vitro glycosylation of yeast aspartyl—tRNA synthetase.  相似文献   

10.
Glycine max L. Merr. cv. Maple Arrow protoplasts were prepared from both tissue-cultured root cells and symbiotically-infected (fix+) nodule cells. Whilst both cell types showed glucan synthetase II (GS II; EC 2.4.1.29) activity, neither cell type, whole or gently disrupted, showed glucan synthetase I activity. After sucrose density gradient centrifugation one of the several GS II activity peaks co-sedimented with the single radioactive particulate peak from [125I]-labelled protoplasts at 1.14 g ml−1. This peak is presumed to be the plasma membrane peak because labelling of protoplasts with colloidal gold prior to disruption moved the 125I peak and the corresponding glucan synthetase II activity into denser regions of the gradient, leaving endoplasmic reticulum-contaminating IDPase (EC 3.1.3.31) and other glucan synthetase II peaks unmoved. Results are discussed in relation to various strategies of plasma membrane isolation.  相似文献   

11.
Chitin synthetase was solubilized with digitonin from a particulate yeast fraction. The solubilized enzyme, which did not sediment at 200,000 X g and emerged after the void volume in a Sepharose 6B column, was active only after treatment with a protease. This confirms that chitin synthetase exists in the plasma membrane as a zymogen and that initiation of the chitin septum occurs by localized activation of the enzyme. By differential extraction with sodium cholate and digitonin, followed by chromatography on Sepharose 6B, a 20-fold purification of the enzyme was achieved with respect to the crude particles. The purified enzyme showed a requirement for a phospholipid; phosphatidylserine and lysophosphatidylserine were the best activators. Unsaturated fatty acids strongly inhibited synthetase activity, whereas their saturated counterparts were inert. The solubilized enzyme catalyzed the formation of insoluble chitin in the absence of added primer. The synthetic polysaccharide was examined by electron microscopy and found to consist of lozenge-shaped particles about 60 nm long and 10 nm wide.  相似文献   

12.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

13.
Two forms of yeast cytochrome c synthetases with different specificities were resolved, one (synthetase I), solubilized from mitochondria or the cell debris with Triton X-100, recognizing not horse apocytochrome c but yeast apo-iso-1-cytochrome c as a substrate and the other (synthetase II) still bound with the particulate fraction from mitochondria after treatment with Triton, recognizing both horse and yeast apocytochromes c. The activity with labeled yeast apo-iso-1-cytochrome c as a substrate of cytochrome c synthetase I can be quantitatively inhibited by nonlabeled Candida krusei apocytochrome c and partially by nonlabeled tuna apocytochrome c but not by nonlabeled horse apocytochrome c indicating a specific amino acid sequence being recognized. However, an enzyme similarly solubilized from beef heart mitochondria recognized both horse apocytochrome c and yeast apo-iso-1-cytochrome c for attachment of heme. In view of the fact that the yeast synthetase II and the beef synthetase can both utilize either horse apocytochrome c or yeast apo-iso-1-cytochrome c as substrates, we suggest that these enzymes may also be involved in biosynthesis of cytochrome c1, that is, the ability to attach heme to apocytochrome c and apocytochrome c1 may have been conserved in eucaryotic cells, and that both synthetases may therefore be homologous.  相似文献   

14.
Chitosomes from the wall-less “slime” mutant of Neurospora crassa   总被引:3,自引:0,他引:3  
Cell-free extracts from the wall-less slime mutant of Neurospora crassa and the mycelium of wild type exhibit similar chitin synthetase properties in specific activity, zymogenicity and a preferential intracellular localization of chitosomes. The yield of chitosomal chitin synthetase from sline cells was essentially the same irrespective of cell breakage procedure (osmotic lysis or ballistic disruption) —an indication that chitosomes are not fragments of larger membranes produced by harsh (ballistic) disruption procedures. The plasma membrane fraction, isolated from slime cells treated with concanavalin A, contained only a minute portion of the total chitin synthetase of the fungus. Most of the activity was in the cytoplasmic fraction; isopycnic sedimentation of this fraction on a sucrose gradient yielded a sharp band of chitosomes with a buoyant density=1.125 g/ cm3. Approximately 76% of the total chitin synthetase activity of the slime mutant was recovered in the chitosome band. Because of their low density, chitosomes could be cleanly separated from the rest of the membranous organelles of the fungus. Apparently, the lack of a cell wall in the slime mutant is not due to the absence of either chitosomes or zymogenic chitin synthetase.Abbreviations Con A concanavalin A - d buoyant density in g/cm3 - GlcNAc N-acetyl-D-glucosamine - MES 2-[N-morpholino]ethanesulfonic acid - UDP-GlcNAc uridine diphosphate N-acetyl-D-glucosamine  相似文献   

15.
Prolyl hydroxylase [(EC 1.14.11.2; prolyl-glycyl peptide, 2-oxoglutarate dioxygenase (4-hydroxylating)] was electrophoresed on polyacrylamide gels and the enzyme in the gels was shown to bind [acetyl-3H]concanavalin A. The enzyme-lectin complex was dissociated by treating the gel with methyl α-D-mannopyranoside, a sugar known to inhibit binding of concanavalin A to glycoproteins. Furthermore, prolyl hydroxylase activity was partially inhibited by concanavalin A when the enzyme was assayed in the absence of bovine serum albumin, a protein which enhances enzymic activity. The inhibition of enzyme activity was prevented by sugars known to react with concanavalin A.  相似文献   

16.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   

17.
Boss WF  Ruesink AW 《Plant physiology》1979,64(6):1005-1011
The plasma membranes of protoplasts released from carrot suspension culture cells were labeled with [14C]acetyl-concanavalin A. After homogenization a single labeled membrane fraction was isolated in a continuous isopycnic Renografin gradient. The labeled membranes peaked at an apparent density of 1.14 grams per cubic centimeter between the Golgi fraction at a density of 1.11 grams per cubic centimeter as determined by latent IDPase activity and the mitochondria at a density of 1.16 grams per cubic centimeter as determined by the cytochrome c oxidase activity. This method provided a very discrete peak of putative plasma membrane. On discontinuous Renografin gradients a relatively pure fraction of labeled plasma membranes could be readily isolated at the 1.122 to 1.146 grams per cubic centimeter interface. The labeled fraction was enriched in both an ATPase (pH 6.5) and a glucan synthetase with a pH optimum of 6.5 whose activity was promoted by magnesium and cellobiose. Enzyme activities were not altered by the membrane label.  相似文献   

18.
1. The alanyl-s-RNA synthetase of tomato roots has been purified by ammonium sulphate precipitation, adsorption on calcium phosphate gel and DEAE-cellulose chromatography and its properties have been investigated. 2. Enzyme activity was measured by using the hydroxamate assay, the [(32)P]pyrophosphate-ATP-exchange assay and the [(14)C]alanyl-s-RNA assay. The purified enzyme was specific for l-alanine and was activated by Mg(2+) ions and to a smaller extent by Co(2+) and Mn(2+) ions. It was free from adenosine triphosphatase, pyrophosphatase and ribonuclease, and possessed a specific activity comparable with that of the most highly purified aminoacyl-s-RNA synthetases from animal and microbial systems. 3. The properties of the purified enzyme were similar in many respects to most other highly purified aminoacyl-s-RNA synthetases. It differed, however, in that the pH optimum of the hydroxamate assay was almost the same as that of the pyrophosphate-ATP-exchange assay and in requiring a high concentration of l-alanine for maximum activity (100mumoles/ml.). 4. The purified enzyme was not absolutely specific for tomato-root s-RNA; slight activity was also observed with yeast s-RNA. 5. The properties of this enzyme are fully consistent with the suggestion that the enzymic formation of alanyl-s-RNA proceeds via the intermediate formation of alanyl acyl-adenylate with the elimination of pyrophosphate from ATP. It remains to be shown the extent to which alanyl-s-RNA participates further in subsequent stages of protein synthesis in plants.  相似文献   

19.
P M Moore  J F Peberdy 《Microbios》1975,12(47-48):29-39
The enzyme chitin synthetase (UDP-acetylaminodeoxyglucosyl transferase, EC 2.4.1.16) in Cunninghamella elegans has been investigated. The enzyme was present in the microsomal, cell wall, mitochondrial and the soluble cytoplasmic fraction of the mycelium, with the former having the highest specific activity. The properties of the enzyme in this fraction were investigated; the Km for UDP GlcNAc was 1.23 mM and 2.08 mM GlcNAc in the presence of 1 mM UDP GlcNAc. The temperature optimum was between 26 degrees and 29 degrees C and maximal activity was at pH 6.25. Mg++ ions had no effect on chitin synthesis, but soluble chitodextrins inhibited the enzyme. The production of chitin synthetase was correlated with the growth of the fungus, maximum activity being found during the late exponential phase of growth. Chitin was confirmed as the sole product of enzyme action, by digestion with chitinase.  相似文献   

20.
Candida albicans , the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 °C under aerobic conditions with 5% CO2. Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号