首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic insights into trophoblast differentiation and placental morphogenesis   总被引:12,自引:0,他引:12  
The placenta is comprised of an inner vascular network covered by an outer epithelium, called trophoblast, all designed to promote the delivery of nutrients to the fetus. Several specialized trophoblast cell subtypes arise during development to promote this function, including cells that invade the uterus to promote maternal blood flow to the implantation site, and other cells that fuse into a syncytium, expand and fold to increase the surface area for efficient transport. Mutation of many genes in mice results in embryonic mortality or fetal growth restriction due to defects in placental development. Several important principles about placental development have emerged from these studies. First, distinct molecular pathways regulate the differentiation of the various trophoblast cell subtypes. Second, trophoblast proliferation, differentiation and morphogenesis are highly regulated by interactions with adjacent cell types. Finally, the specific classes of mutant phenotypes observed in the placenta of knockout mice resemble those seen in humans that are associated with preeclampsia and intrauterine growth restriction.  相似文献   

2.
Wnt7b regulates placental development in mice.   总被引:1,自引:0,他引:1  
Secreted Wnt proteins regulate many developmental processes in multicellular organisms. We have generated a targeted mutation in the mouse Wnt7b gene. Homozygous Wnt7b mutant mice die at midgestation stages as a result of placental abnormalities. Wnt7b expression in the chorion is required for fusion of the chorion and allantois during placental development. The alpha4 integrin protein, required for chorioallantoic fusion, is not expressed by cells in the mutant chorion. Wnt7b also is required for normal organization of cells in the chorionic plate. Thus, Wnt7b signaling is central to the early stages of placental development in mammals.  相似文献   

3.
ObjectivesSuccess in pregnancy in mammals predominantly depends on a well‐developed placenta. The differentiation of invasive trophoblasts is a fundamental process of placentation, the abnormalities of which are tightly associated with pregnancy disorders including preeclampsia (PE). Monoclonal nonspecific suppressor factor beta (MNSFβ) is an immunosuppressive factor. Its conventional knockout in mice induced embryonic lethality, whereas the underlying mechanism of MNSFβ in regulating placentation and pregnancy maintenance remains to be elucidated.MethodsTrophoblast‐specific knockout of MNSFβ was generated using Cyp19‐Cre mice. In situ hybridization (ISH), haematoxylin and eosin (HE), immunohistochemistry (IHC) and immunofluorescence (IF) were performed to examine the distribution of MNSFβ and insulin‐like growth factor 2 mRNA‐binding protein 2 (IGF2BP2) at the foeto‐maternal interface. The interaction and expression of MNSFβ, IGF2BP2 and invasion‐related molecules were detected by immunoprecipitation (IP), immunoblotting and quantitative real‐time polymerase chain reaction (qRT‐PCR). The cell invasion ability was measured by the Transwell insert assay.ResultsWe found that deficiency of MNSFβ in trophoblasts led to embryonic growth retardation by mid‐gestation and subsequent foetal loss, primarily shown as apparently limited trophoblast invasion. In vitro experiments in human trophoblasts demonstrated that the conjugation of MNSFβ with IGF2BP2 and thus the stabilization of IGF2BP2 essentially mediated the invasion‐promoting effect of MNSFβ. In the placentas from MNSFβ‐deficient mice and severe preeclamptic (PE) patients, downregulation of MNSFβ was evidently associated with the repressed IGF2BP2 expression.ConclusionsThe findings reveal the crucial role of MNSFβ in governing the trophoblast invasion and therefore foetal development, and add novel hints to reveal the placental pathology of PE.  相似文献   

4.
Differentiation of placental trophoblast stem (TS) cells to trophoblast giant (TG) cells is accompanied by transition from a mitotic cell cycle to an endocycle. Here, we report that Cdh1, a regulator of the anaphase-promoting complex/cyclosome (APC/C), negatively regulates mitotic entry upon the mitotic/endocycle transition. TS cells derived from homozygous Cdh1 gene-trapped (Cdh1GT/GT) murine embryos accumulated mitotic cyclins and precociously entered mitosis after induction of TS cell differentiation, indicating that Cdh1 is required for the switch from mitosis to the endocycle. Furthermore, the Cdh1GT/GT TS cells and placenta showed aberrant expression of placental differentiation markers. These data highlight an important role of Cdh1 in the G2/M transition during placental differentiation.  相似文献   

5.
《Cell Stem Cell》2022,29(5):810-825.e8
  1. Download : Download high-res image (290KB)
  2. Download : Download full-size image
  相似文献   

6.
The outer epithelial cell layer of human placenta, the syncytiotrophoblast, is a specialised terminally differentiated multinucleate tissue. It is generated and renewed from underlying cytotrophoblast cells that undergo proliferation, differentiation and fusion with syncytiotrophoblast. Acquisition of fresh cellular components is thought to be balanced by apoptosis and shedding of aged nuclei. This process of trophoblast cell turnover maintains a functional syncytiotrophoblast, capable of sufficient nutrient transfer from mother to foetus. Foetal growth restriction (FGR) is a pregnancy complication associated with aberrant trophoblast turnover and reduced activity of certain amino acid transporters, including the taurine transporter (TauT). Taurine is the most abundant amino acid in human placenta implying an important physiological role within this tissue. Unlike other amino acids, taurine is not incorporated into proteins and in non-placental cell types represents an important osmolyte involved in cell volume regulation, and is also cytoprotective. Here, we investigated the role of taurine in trophoblast turnover using RNA interference to deplete primary human trophoblast cells of TauT and reduce intracellular taurine content. Trophoblast differentiation was compromised in TauT-deficient cells, and susceptibility of these cells to an inflammatory cytokine that is elevated in FGR was increased, evidenced by elevated levels of apoptosis. These data suggest an important role for taurine in trophoblast turnover and cytoprotection.  相似文献   

7.
Pregnant hamsters were ovariectomized on Day 7 and daily supplements of progesterone or progesterone plus oestradiol benzoate were given. Fetal development and survival was 14% and 62% respectively. Histological examination indicated that failure of labyrinthine development in the placenta resulted in failure to form an adequate number of maternal arterial spaces communicating with the base of the trophospongium to allow trophoblast migration in the related maternal spiral arteries. Progesterone was essential at all stages of gestation to sustain decidualized tissues and allow survival of a minority of fetuses. Oestradiol supplementation significantly increased fetal survival, but not to normal levels, suggesting that other oestrogens may be essential for the maintenance of normal hamster pregnancy.  相似文献   

8.
9.
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in phosphoinositide turnover and is involved in a variety of physiological functions. We analyzed PLCdelta1 knockout mice and found that PLCdelta1 is required for the maintenance of skin homeostasis. However, there were no remarkable abnormalities except hair loss and runting in PLCdelta1 knockout mice, even though PLCdelta1 is broadly distributed. Here, we report that mice lacking both PLCdelta1 and PLCdelta3 died at embryonic day 11.5 (E11.5) to E13.5. PLCdelta1/PLCdelta3 double-knockout mice exhibited severe disruption of the normal labyrinth architecture in the placenta and decreased placental vascularization, as well as abnormal proliferation and apoptosis of trophoblasts in the labyrinth area. Furthermore, PLCdelta1/PLCdelta3 double-knockout embryos supplied with a normal placenta by the tetraploid aggregation method survived beyond E14.5, clearly indicating that the embryonic lethality is caused by a defect in trophoblasts. On the basis of these results, we conclude that PLCdelta1 and PLCdelta3 are essential in trophoblasts for placental development.  相似文献   

10.
11.
During anther development a series of cell specification events establishes the male gametophyte and the surrounding sporophytic structure. Here we show that the homeobox gene WUSCHEL, originally identified as a central regulator of stem cell maintenance, plays an important role in cell type specification during male organogenesis. WUS expression is initiated very early during anther development in the precursor cells of the stomium and terminates just before the stomium cells enter terminal differentiation. At this stage the stomium cells and the neighboring septum cells that separate the pollen sacs undergo typical cell wall thickening and degenerate which leads to rupture of the anther and pollen release. In wus mutants, neither stomium cells nor septum cells differentiate or undergo cell death and degenerate. As a consequence, the anther stays intact and pollen is not released. CLAVATA3 which is activated by WUS in stem cell maintenance, is not activated in anthers indicating a novel pathway regulated by WUS. Comparing WUS function in stem cell maintenance and sexual organ development suggests that WUS expressing cells represent a conserved signaling module that regulates behavior and communication of undifferentiated cells.  相似文献   

12.
Regulation of cytotrophoblast differentiation toward extravillous trophoblasts (EVTs) is critical for establishing successful pregnancy. Previous studies have focused primarily on the factors promoting the differentiation, while inhibitory regulators except hypoxia have been less documented. In this study, to test our hypothesis that angiotensin II (Ang II) would inhibit EVT differentiation, we investigated the effects of Ang II on trophoblast outgrowth and the expression of molecules associated with the proliferation and invasion of trophoblasts using human first trimester villous explant cultures. Ang II increased EVT outgrowth and the number of cells in cell columns. Moreover, Ang II-treated explants exhibited increased Ki67 and integrin alpha5 immunoreactivity in EVTs as well as matrix metalloproteinase-2 activity in the conditioned media, and decreased alpha1 integrin immunoreactivity, which are compatible with the features of the proliferative phenotype EVTs. These effects of Ang II were similar to those of hypoxia (3% O(2)). Ang II stimulated the expression of hypoxia inducible factor-1alpha at both mRNA and protein levels, and also enhanced the expression of plasminogen activator inhibitor-1 (PAI-1). Data presented herein suggest a possible role for Ang II in impairing trophoblast differentiation toward an invasive phenotype, which might be associated with shallow invasion in preeclamptic placentas.  相似文献   

13.
Both plasminogen activators and matrix metalloproteinases (MMPs) have been implicated in a variety of developmental processes in the mouse during embryo implantation and placentation. We show here that pharmacological treatment of plasminogen-deficient mice with the broad spectrum MMP inhibitor galardin leads to a high rate of embryonic lethality. Implantation sites from plasminogen-deficient galardin-treated mice at 7.5 days post coitus (dpc) showed delay in both decidualization and invasion of maternal vessels into the decidua. At 8.5 dpc, half of the embryos were runted and still at the developmental stage of a 7.5 dpc embryo. Most embryos that escaped these initial defects eventually died, probably from defective vascularization and development of the labyrinth layer of the placenta, although a direct role on embryo development cannot be ruled out. These results demonstrate that the combination of MMPs and plasminogen is essential for the proper development of the placenta. Plasminogen deficiency alone and galardin treatment alone had much less effect and there was a pronounced synergism on both placental vascularization and embryonic lethality, indicating a functional overlap between plasminogen and MMPs.  相似文献   

14.
15.
In the mature mouse lung, the proximal-distal (P-D) axis is delineated by two distinct epithelial subpopulations: the proximal bronchiolar epithelium and the distal respiratory epithelium. Little is known about the signaling molecules that pattern the lung along the P-D axis. One candidate is Bone Morphogenetic Protein 4 (Bmp4), which is expressed in a dynamic pattern in the epithelial cells in the tips of growing lung buds. Previous studies in which Bmp4 was overexpressed in the lung endoderm (Bellusci, S., Henderson, R., Winnier, G., Oikawa, T. and Hogan, B. L. M. (1996) Development 122, 1693-1702) suggested that this factor plays an important role in lung morphogenesis. To further investigate this question, two complementary approaches were utilized to inhibit Bmp signaling in vivo. The Bmp antagonist Xnoggin and, independently, a dominant negative Bmp receptor (dnAlk6), were overexpressed using the surfactant protein C (Sp-C) promoter/enhancer. Inhibiting Bmp signaling results in a severe reduction in distal epithelial cell types and a concurrent increase in proximal cell types, as indicated by morphology and expression of marker genes, including the proximally expressed hepatocyte nuclear factor/forkhead homologue 4 (Hfh4) and Clara cell marker CC10, and the distal marker Sp-C. In addition, electron microscopy demonstrates the presence of ciliated cells, a proximal cell type, in the most peripheral regions of the transgenic lungs. We propose a model in which Bmp4 is a component of an apical signaling center controlling P-D patterning. Endodermal cells at the periphery of the lung, which are exposed to high levels of Bmp4, maintain or adopt a distal character, while cells receiving little or no Bmp4 signal initiate a proximal differentiation program.  相似文献   

16.
17.
During early pregnancy, interleukin-1 (IL-1) is mainly produced and secreted by maternal decidua. Yet, its biological function on placental cells is not well defined. In this study, we employed JAR choriocarcinoma cell line as a model of human placental trophoblast to study the effect of IL-1. Treatment with recombinant human IL-1beta resulted in significant inhibition of JAR proliferation (P < .05) paralleled with increased cytotoxicity. The inhibitory effect was blocked by both IL-1 receptor antagonist (IL-1Ra) and antihuman IL-1beta monoclonal antibody. Analyzing the mode of action, IL-1beta was found to induce cell cycle arrest in the G0/G1 phase and triggered apoptotic cell death. These findings demonstrated that IL-1 regulates human trophoblast growth by induction of cell cycle delay and cell death.  相似文献   

18.
19.
The purpose of this study was to examine the expression of hemeoxygenases HO-1 and HO-2, which are responsible for the production of carbon monoxide (CO), in the human placenta and placental bed and to determine the role of inhibitors of HO on placental perfusion pressure. We hypothesized that HO is expressed within the placenta and that invading cytotrophoblast cells (CTB) express HO isoforms. The expression of HO-1 and HO-2 was studied on placenta and placental bed biopsies, obtained using a transcervical sampling technique, from normal human pregnancies between 8 and 19 wk gestation and at term. In the placenta, HO-2 immunostaining was prominent in syncytiotrophoblast in the first trimester and reduced toward term (P<0.0005). HO-2 endothelial immunostaining was weak in the first trimester, but increased by term (P<0.0005). Within the placental bed, HO-2 was expressed by CTB in cell columns, the cytotrophoblast shell, and cell islands. Both intravascular CTB and interstitial CTB expressed HO-2. HO-1 immunostaining was low in the placenta but intense on the CTB within the placental bed. A striking feature was the absence of HO-1 from the proximal layers of cell columns, with strong expression on the more distal CTB layers of the cell columns. In placental perfusion studies, a significant dose-dependent increase in perfusion pressure was observed in the presence of zinc protoporphyrin, an inhibitor of HO. These results suggest a role for CO in placental function, trophoblast invasion, and spiral artery transformation. Hemeoxygenase expression in human placenta and placental bed implies a role in regulation of trophoblast invasion and placental function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号