首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic fibers are responsible for the extensibility and resilience of many vertebrate tissues, and improperly assembled elastic fibers are implicated in a number of human diseases. It was recently demonstrated that in vitro, cells first secrete tropoelastin into a punctate pattern of globules. To study the dynamics of macroassembly, that is, the assembly of the secreted tropoelastin globules into elastic fibers, we utilized long-term time-lapse immunofluorescence imaging and a tropoelastin p Timer fusion protein, which shifts its fluorescence spectrum over time. Pulse-chase immunolabeling of the fibroblast-like RFL-6 cells demonstrates that tropoelastin globules aggregate in a hierarchical manner, creating progressively larger fibrillar structures. By analyzing the correlation between cell and extracellular matrix movements, we show that both the aggregation process and shaping the aggregates into fibrillar form is coupled to cell motion. We also show that the motion of non-adjacent cells becomes more coordinated as the physical size of elastin-containing aggregates increases. Our data imply that the formation of elastic fibers involves the concerted action and motility of multiple cells.  相似文献   

2.
Microfibril-associated MAGP-2 stimulates elastic fiber assembly   总被引:3,自引:0,他引:3  
Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 regulates elastic fiber assembly, we used an in vitro model featuring doxycycline-regulated cells conditionally overexpressing exogenous MAGP-2 and constitutively expressing enhanced green fluorescent protein-tagged tropoelastin. Analysis by immunofluorescent staining showed that MAGP-2 overexpression dramatically increased elastic fibers levels, independently of extracellular levels of soluble tropoelastin, indicating that MAGP-2 stimulates elastic fiber assembly. This was associated with increased levels of matrix-associated MAGP-2. Electron microscopy showed that MAGP-2 specifically associates with microfibrils and that elastin globules primarily colocalize with MAGP-2-associated microfibrils, suggesting that microfibril-associated MAGP-2 facilitates elastic fiber assembly. MAGP-2 overexpression did not change levels of matrix-associated fibrillin-1, MAGP-1, fibulin-2, fibulin-5, or emilin-1, suggesting that microfibrils and other elastic fiber-associated proteins known to regulate elastogenesis do not mediate MAGP-2-induced elastic fiber assembly. Moreover, mutation analysis showed that MAGP-2 does not stimulate elastic fiber assembly through its RGD motif, suggesting that integrin receptor binding does not mediate MAGP-2-induced elastic fiber assembly. Because MAGP-2 interacts with Jagged-1 that controls cell-matrix interaction and cell motility, two key factors in elastic fiber macroassembly, microfibril-associated MAGP-2 may stimulate elastic fiber macroassembly by targeting the release of elastin globules from the cell membrane onto developing elastic fibers.  相似文献   

3.
Keloid is a fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. The keloid matrix contains excess collagen and glycosaminoglycans (GAGs), but lacks elastic fiber. However, the roles of these matrix components in the pathogenesis of keloid are largely unknown. Here, we show that elastin and DANCE (also known as fibulin-5), a protein required for elastic fiber formation, are not deposited in the extracellular matrix of keloids, due to excess accumulation of chondoitin sulfate (CS), although the expression of elastin and DANCE is not affected. Amount of CS accumulated in the keloid legion was 6.9-fold higher than in normal skin. Fibrillin-1, a scaffold protein for elastic fiber assembly, was abnormally distributed in the keloid matrix. Addition of purified CS to keloid fibroblast culture resulted in abnormal deposition of fibrillin-1, concomitant with significantly decreased accumulation of elastin and DANCE in the extracellular matrix. We propose that CS plays a crucial role in the development of keloid lesions through inhibition of elastic fiber assembly.  相似文献   

4.
The initial steps of elastic fiber assembly were investigated using an in vitro assembly model in which purified recombinant tropoelastin (rbTE) was added to cultures of live or dead cells. The ability of tropoelastin to associate with preexisting elastic fibers or microfibrils in the extracellular matrix was then assessed by immunofluorescence microscopy using species-specific tropoelastin antibodies. Results show that rbTE can associate with elastic fiber components in the absence of live cells through a process that does not depend on crosslink formation. Time course studies show a transformation of the deposited protein from an initial globular appearance early in culture to a more fibrous structure as the matrix matures. Deposition required the C-terminal region of tropoelastin and correlated with the presence of preexisting elastic fibers or microfibrils. Association of exogenously added tropoelastin to the cellular extracellular matrix was inhibited by the addition of heparan sulfate but not chondroitin sulfate sugars. Together, these results suggest that the matrix elaborated by the cell is sufficient for the initial deposition of tropoelastin in the extracellular space and that elastin assembly may be influenced by the composition of sulfated proteoglycans in the matrix.  相似文献   

5.
Fetal bovine ligamentum nuchae fibroblasts maintained in culture synthesized soluble elastin but were unable to form the insoluble elastic fiber. Secreted elastin precursors accumulated in culture medium and were measured using a radioimmunoassay for elastin. When elastin production was examined in ligament tissue from fetal calves of various gestational ages, cells from tissue taken during the last trimester of development produced significantly more elastin than did cells from younger fetal tissue, with maximal elastin synthesis occurring shortly before birth. Soluble elastin was detected in ligament cells plated at low density until proliferation began to be density inhibited and the cells became quiescent. Also, soluble elastin production per cell declined with increasing population doubling or with age in culture. Cells grown in the presence of 5% fetal calf serum produced approximately four times as much soluble elastin as cells grown in serum-free medium. The addition of dexamethasone (0.1 microM) and bleomycin (1 microgram/ml) increased soluble elastin production by cultured cells 180% and 50%, respectively, whereas theophylline (5 micrograms/ml) depressed production 50% and antagonized stimulation by dexamethasone. Ascorbate (50 micrograms/ml), soybean trypsin inhibitor (1 mg/ml), insulin (100 microunits/ml), and aminoacetonitrile (50 micrograms/ml) had no effect, but cycloheximide at 10(-4) M completely inhibited soluble elastin production. In contrast to cells in culture, ligament tissue minces (ligament cells surrounded by in vivo extracellular matrix) efficiently incorporated soluble elastin precursors into insoluble, cross-linked elastin. In addition, soluble elastin production per cell (per microgram of DNA) was higher in tissue minces than elastin production by cells maintained on plastic. These results suggest a role for extracellular matrix in formation of the elastic fiber and in stabilizing elastin phenotypic expression by ligament fibroblasts. Fibroblasts from the bovine ligamentum nuchae present an excellent model for in vitro studies of elastin biosynthesis.  相似文献   

6.
Elastic fibers provide recoil to tissues that undergo repeated stretch, such as the large arteries and lung. These large extracellular matrix (ECM) structures contain numerous components, and our understanding of elastic fiber assembly is changing as we learn more about the various molecules associated with the assembly process. The main components of elastic fibers are elastin and microfibrils. Elastin makes up the bulk of the mature fiber and is encoded by a single gene. Microfibrils consist mainly of fibrillin, but also contain or associate with proteins such as microfibril associated glycoproteins (MAGPs), fibulins, and EMILIN-1. Microfibrils were thought to facilitate alignment of elastin monomers prior to cross-linking by lysyl oxidase (LOX). We now know that their role, as well as the overall assembly process, is more complex. Elastic fiber formation involves elaborate spatial and temporal regulation of all of the involved proteins and is difficult to recapitulate in adult tissues. This report summarizes the known interactions between elastin and the microfibrillar proteins and their role in elastic fiber assembly based on in vitro studies and evidence from knockout mice. We also propose a model of elastic fiber assembly based on the current data that incorporates interactions between elastin, LOXs, fibulins and the microfibril, as well as the pivotal role played by cells in structuring the final functional fiber.  相似文献   

7.
Fibulin-5 is a 66 kDa modular, extracellular matrix protein that localizes to elastic fibers. Although in vitro protein–protein binding studies have shown that fibulin-5 binds many proteins involved in elastic fiber formation, the specific role of fibulin-5 in elastogenesis remains unclear. To provide a more detailed analysis of elastic fiber assembly in the absence of fibulin-5, the dermis of wild-type and fibulin-5 gene knockout (Fbln5?/?) mice was examined with electron microscopy (EM). Although light microscopy showed apparently normal elastic fibers near the hair follicles and the absence of elastic fibers in the intervening dermis of the Fbln5?/? mouse, EM revealed the presence of aberrantly assembled elastic fibers in both locales. Instead of the elastin being incorporated into the microfibrillar scaffold, the elastin appeared as globules juxtaposed to the microfibrils. Desmosine analysis showed significantly lower levels of mature cross-linked elastin in the Fbln5?/? dermis, however, gene expression levels for tropoelastin and fibrillin-1, the major elastic fiber components, were unaffected. Based on these results, the nature of tropoelastin cross-linking was investigated using domain specific antibodies to lysyl oxidase like-1 (LOXL-1). Immunolocalization with an antibody to the N-terminal pro-peptide, which is cleaved to generate the active enzyme, revealed abundant staining in the Fbln5?/? dermis and no staining in the wild-type dermis. Overall, these results suggest two previously unrecognized functions for fibulin-5 in elastogenesis; first, to limit the extent of aggregation of tropoelastin monomers and/or coacervates and aid in the incorporation of elastin into the microfibril bundles, and second, to potentially assist in the activation of LOXL-1.  相似文献   

8.
The vascular extracellular matrix (ECM) is synthesized and secreted during embryogenesis and facilitates the growth and remodeling of large vessels. Proper interactions between the ECM and vascular cells are pivotal for building the vasculature required for postnatal dynamic circulation. The ECM serves as a structural component by maintaining the integrity of the vessel wall while also regulating intercellular signaling, which involves cytokines and growth factors. The major ECM component in large vessels is elastic fibers, which include elastin and microfibrils. Elastin is predominantly synthesized by vascular smooth muscle cells (SMCs) and uses microfibrils as a scaffold to lay down and assemble cross-linked elastin. The absence of elastin causes developmental defects that result in the subendothelial proliferation of SMCs and inward remodeling of the vessel wall. Notably, elastic fiber formation is attenuated in the ductus arteriosus and umbilical arteries. These two vessels function during embryogenesis and close after birth via cellular proliferation, migration, and matrix accumulation. In dynamic postnatal mechano-environments, the elastic fibers in large vessels also serve an essential role in proper signal transduction as a component of elastin-contractile units. Disrupted mechanotransduction in SMCs leads to pathological conditions such as aortic aneurysms that exhibit outward remodeling. This review discusses the importance of the ECM—mainly the elastic fiber matrix—in large vessels during developmental remodeling and under pathological conditions. By dissecting the role of the ECM in large vessels, we aim to provide insights into the role of ECM-mediated signal transduction that can provide a basis for seeking new targets for intervention in vascular diseases.  相似文献   

9.
EMILIN-1 deficiency induces elastogenesis and vascular cell defects   总被引:1,自引:0,他引:1  
EMILINs constitute a family of genes of the extracellular matrix with high structural similarity. Four genes have been identified so far in human and mouse. To gain insight into the function of this gene family, EMILIN-1 has been inactivated in the mouse by gene targeting. The homozygous animals were fertile and did not show obvious abnormalities. However, histological and ultrastructural examination revealed alterations of elastic fibers in aorta and skin. Formation of elastic fibers by mutant embryonic fibroblasts in culture was also abnormal. Additional alterations were observed in cell morphology and anchorage of endothelial and smooth muscle cells to elastic lamellae. Considering that EMILIN-1 is adhesive for cells and that the protein binds to elastin and fibulin-5, EMILIN-1 may regulate elastogenesis and vascular cell maintenance by stabilizing molecular interactions between elastic fiber components and by endowing elastic fibers with specific cell adhesion properties.  相似文献   

10.
The formation of a mature elastic fiber is thought to proceed by the deposition of elastin on pre-existing microfibrils (10-12 nm in diameter). Immunohistochemical evidence has suggested that in developing tissues such as aorta and ligamentum nuchae, small amounts of elastin are associated with microfibrils but are not detected at the light microscopic and ultrastructural levels. Dermal tissue contains a complex elastic fiber system consisting of three types of fibers--oxytalan, elaunin, and elastic--which are believed to differ in their relative contents of microfibrils and elastin. According to ultrastructural analysis, oxytalan fibers contain only microfibrils, elaunin fibers contain small quantities of amorphous elastin, and elastic fibers are predominantly elastin. Using indirect immunofluorescence techniques, we demonstrate in this study that nonamorphous elastin is associated with the oxytalan fibers. Frozen sections of normal skin were incubated with antibodies directed against human aortic alpha elastin and against microfibrillar proteins isolated from cultured calf aortic smooth muscle cells. The antibodies to the microfibrillar proteins and elastin reacted strongly with the oxytalan fibers of the upper dermis. Oxytalan fibers therefore are composed of both microfibrils and small amounts of elastin. Elastin was demonstrated extracellularly in human skin fibroblasts in vitro by indirect immunofluorescence. The extracellular association of nonamorphous elastin and microfibrils on similar fibrils was visualized by immunoelectron microscopy. Treatment of these cultures with sodium dodecyl sulfate/mercaptoethanol (SDS/ME) solubilized tropoelastin and other proteins that reacted with the antibodies to the microfibrillar proteins. It was concluded that the association of the microfibrils with nonamorphous elastin in intact dermis and cultured human skin fibroblasts may represent the initial step in elastogenesis.  相似文献   

11.
To gain insight into how a naturally occurring scaffold composed of extracellular matrix (ECM) proteins provides directional guidance for capillary sprouting, we examined angiogenesis in whole-mount specimens of rat mesentery. Angiogenesis was studied in response to normal maturation, the injection of a mast cell degranulating substance (compound 48/80), and mild wounding. Confocal microscopy of specimens immunolabeled for elastin revealed a network of crosslinked elastic fibers with a density of 140.8 +/- 37 mm of fiber/mm(2) tissue. Fiber diameters ranged from 180 to 1400 nm, with a mean value of 710 +/- 330 nm. Capillary sprouts contained CD31- and OX-43-positive endothelial cells as well as desmin-positive pericytes. During normal maturation, leading endothelial cells and pericytes were in contact and aligned with an elastic fiber in approximately 80-90% of all sprouts. In wounding and compound 48/80-treated specimens, in which angiogenesis was markedly increased, leading endothelial cells remained in contact and aligned with elastic fibers in approximately 60-80% of all sprouts. These observations indicate that elastic fibers are used for endothelial and pericyte migration during capillary sprouting in rat mesentery. The composition of this elastic fiber matrix may provide important clues for the development of tissue-engineered scaffolds that support and directionally guide angiogenesis.  相似文献   

12.
Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.  相似文献   

13.
After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re‐establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full‐length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9‐week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell‐based gene therapy provides a new approach to cardiac regeneration.  相似文献   

14.
Elastic cartilage possesses many elastic fibers and has a high degree of elasticity. However, insufficient elastic fiber production remains unsolved in elastic cartilage tissue engineering. Exogenous elastin is difficult to degrade and violates cell proliferation and migration during cartilage regeneration. Moreover, exogenous elastic fibers are difficult to assemble with endogenous extracellular matrix components. We produced genetically engineered chondrocytes overexpressing elastin to boost endogenous elastic fiber production. After identifying that genetic manipulation hardly impacted the cell viability and chondrogenesis of chondrocytes, we co-cultured genetically engineered chondrocytes with untreated chondrocytes in a three-dimensional gelatin methacryloyl (GelMA) system. In vitro study showed that the co-culture system produced more elastic fibers and increased cell retention, resulting in strengthened mechanics than the control system with untreated chondrocytes. Moreover, in vivo implantation revealed that the co-culture GelMA system greatly resisted host tissue invasion by promoting elastic fiber production and cartilage tissue regeneration compared with the control system. In summary, our study indicated that genetically engineered chondrocytes overexpressing elastin are efficient and safe for promoting elastic fiber production and cartilage regeneration in elastic cartilage tissue engineering.  相似文献   

15.
Morphological, immunocytochemical and ultrastructural methods were used to investigate the role of cells during elastogenesis in the elastic tendon of the chicken wing. Intimate contact of the cell processes with elastic fibers was observed in adult birds. During development there was a sequential appearance of microfibril bundles that became progressively impregnated with amorphous elastin, which eventually predominated in fully developed elastic fibers. The growing elastic fibers were usually enveloped by recesses of the cell surface. The tendon cells were polarized in their association with fibrous components of the extracellular matrix. This arrangement suggests that these cells secrete and organize elastic and collagen fibers to different extracellular compartments. These results show that cells are intimately involved in producing components of different extracellular matrix fibers, in controlling their assembly, and in defining their borders and associations during development.  相似文献   

16.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

17.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

18.
In this study a rabbit antiserum against human aortic elastin, which showed a high degree of species specificity in ELISA tests, was used to examine elastin fiber formation in the human fetal aorta between the ages of 14 and 23 weeks. Elastin was first detected by the antibody in the matrix of the 14-week-old specimen in association with the microfibrillar component. At this stage of development, the sections did not reveal structures morphologically identifiable as elastin. By the 17th week, discrete loci of elastin deposition were observed together with well-defined elastin fibrils. Only by the 23rd week did the aorta show the characteristic layering of elastic fibrils separating the myoblasts of the tunica media. In the latter specimen, the newly synthesized uncrosslinked elastin appeared to be unevenly distributed on the surface of elastin fibrils where it formed continuous strips of variable width arranged mostly in the form of spirals. This observation is discussed with respect to the proposals that the morphogenesis of elastic tissue is a dynamic process involving a close interrelationship between elastic fibrils and elastogenic cells and the morphogenetic movement of elastogenic cells plays an important role not only in the growth of elastic fibrils but also in the ultrastructural organization of the tissue.  相似文献   

19.
Engineering materials suitable for vascular prostheses has been a significant challenge, especially in promoting extracellular matrix (ECM) development within synthetic materials. Herein we have utilized two different elastin mimetic peptide sequences, EM-19 and EM-23, to provide a template for ECM deposition when covalently incorporated into scaffold materials. Both peptides contain the hexapeptide sequence VGVAPG, which interacts with the cell surface receptor known as the elastin binding protein (EBP). Additionally, EM-23 contains an RGDS sequence intended for the peptide's interaction with the α(v)β(3) integrin. We first confirm that the presence of both peptides approximates the synergistic mechanism for elastic fiber assembly in vivo, a process that utilizes both the EBP and α(v)β(3). Peptides were then grafted onto the surface of a poly(ethylene glycol) diacrylate (PEG-DA) hydrogel and their efficacy as templates for promoting cell adhesion, spreading, and elastin deposition was evaluated. Although both peptides were able to encourage smooth muscle cell (SMC) adhesion and elastin deposition over PEG-DA and PEG-RGDS controls, PEG-grafted EM-23 was proven to be the more promising motif for inclusion in synthetic substrates to be used in the engineering of vascular tissues, enhancing cell adhesion 60-fold and elastin content 2-fold compared with PEG-RGDS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号