首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous studies, the yeast Endomyces fibuliger LU677 was found to degrade amygdalin in bitter apricot seeds. The present investigation shows that E. fibuliger LU677 produces extracellular β-glycosidase activity when grown in malt extract broth (MEB). Growth was very good at 25 °C and 30 °C and slightly less at 35 °C. When grown in MEB of pH 5 and pH 6 with addition of 0, 10 or 100 ppm amygdalin, E. fibuliger produced only slightly more biomass at pH 5, and was only slightly inhibited in the presence of amygdalin. Approximately, 60% of the added amygdalin was degraded (fastest at 35 °C) during an incubation period of 5 days. Supernatants of cultures grown at 25 °C and pH 6 for 5 days were tested for the effects of pH and temperature on activity (using amygdalin, linamarin and prunasin as substrates). Prunase activity had two pH optima (pH 4 and pH 6), amygdalase and linamarase only one each at pH 6 and pH 4–5 respectively. The linamarase activity evolved earlier than amygdalase (2 days and 4 days respectively). The data thus indicate the presence of at least two different glycosidases having different pH optima and kinetics of excretion. In the presence of amygdalin, lower glycosidase activities were generally produced. However, the amygdalin was degraded from the start of the growth, strongly indicating an uptake of amygdalin by the cells. The temperature optimum for all activities was at 40 °C. Activities of amygdalase (assayed at pH 4) and linamarase (at pH 6) evolving during the growth of E. fibuliger were generally higher in cultures grown at 25 °C and 30 °C. TLC analysis of amygdalin degradation products show a two-stage sequential mechanism as follows: (1) amygdalin to prunasin and (2) prunasin to cyanohydrin. Received: 16 September 1997 / Received revision: 6 October 1997 / Accepted: 14 October 1997  相似文献   

2.
Different proteoglycans (PGs) were isolated from pig aorta for aggregation studies with hyaluronic acid and human low-density lipoproteins (LDL). Extraction of the intima-media with 4M-guanidinium chloride and digestion of the residue with collagenase solubilized 91% of aortic hexuronic acid content. From the guanidinium chloride extract two PGs were isolated by ion-exchange and gel-permeation chromatography: proteochondroitin sulphate (PGI) with a protein-core apparent Mr of 250 000 and proteodermatan-chondroitin sulphate (PGII) with a protein-core apparent Mr of 55 000. Only PGI forms high-Mr aggregates with hyaluronic acid. From the collagenase digest two other PGs were isolated: proteoheparan sulphate and proteochondroitin sulphate (PGIII and PGIV respectively). PGIV had a smaller hydrodynamic size than PGI. PGI and PGII formed insoluble complexes with human LDL in the presence of Ca2+. PGIII or PGIV did not form precipitates with the LDL. PGI and PGII, but neither PGIII nor PGIV, were bound to LDL-Sepharose. The main peaks of PGI and PGII were eluted from LDL-Sepharose with 60 mM- and 90 mM-NaCl respectively. The results indicate that aortic PGs have different interacting potentials with lipoproteins, depending on their Mr and their glycosaminoglycan composition.  相似文献   

3.
Optimizing production of alpha-amylase production by Thermoactinomyces vulgaris isolated from Egyptian soil was studied. The optimum incubation period, temperature and initial pH of medium for organism growth and enzyme yield were around 24 h, 55 degrees C and 7.0, respectively. Maximum alpha-amylase activity was observed in a medium containing starch as carbon source. The other tested carbohydrates (cellulose, glucose, galactose, xylose, arabinose, lactose and maltose) inhibited the enzyme production. Adding tryptone as a nitrogen source exhibited a maximum activity of alpha-amylase. Bactopeptone and yeast extract gave also high activity comparing to the other nitrogen sources (NH4CI, NH4NO3, NaNO3, KNO3, CH3CO2NH4). Electrophoresis profile of the produced two alpha-amylase isozymes indicated that the same pattern at about 135-145 kDa under different conditions. The optimum pH and temperature of the enzyme activity were 8.0 and 60 degrees C, respectively and enzyme was stable at 50 degrees C over 6 hours. The enzyme was significantly inhibited by the addition of metal ions (Na+, Co2+ and Ca2+) whereas CI- seemed to act as activator. The enzyme was not affected by 0.1 mM EDTA while higher concentration (10 mM EDTA) totally inactivated the enzyme.  相似文献   

4.
A strain of Aspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50 degrees C temperature optimum; optimum pH was 6.0-6.5 for xylanase I and 6.0 for xylanase II. At 50 degrees C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.  相似文献   

5.
During decaffeination of Coffee Processing Plant Solid Wastes (CPSW) by actinomycetes, Thermomonospora, Strain 29 exhibited high titers of cellulase and xylanase. This organism, originally isolated on soybean seed coat was grown in solid state fermentation on CPSW supplemented with mineral salts. Enzymes recovered were arabinosidase, xylanase, and beta-D-xylosidase. Higher activity of the former two enzymes was in the extracellular broth, whereas the beta-D-xylosidase activity was highest in the cell fraction. The enzymes were characterized after precipitation with (NH(4))(2)SO(4), dialysis, and gel filtration. Production of all three enzymes was inhibited by monomeric sugars and sugar alcohols but not by arabinoxylan, xylans, or xylan containing water insoluble carbohydrates. The optimum pH for the activity was 6.5, 7.0, and 7.5 for beta-xylosidase, xylanase and arabinosidase (alpha-L-arabinofuranosidase, alpha-arabinosidase, alpha-L-arabinosidase) respectively. These enzymes were stable in the pH range of 6.5 to 8.0. All three enzymes were thermostable up to 80 degrees C. At 55 degrees C, arabinosidase had the longest half life of 120 h. However, at 40 degrees C, xylanase had the longest half life (504 h). At either temperature, beta-D-xylosidase had the shortest half life. The molecular weights (kDa), and Kms (mM) were estimated to be 95, 0.27; 45, 12.4; and 106, 0.67 for arbinosidase, xylanase, and beta-xylosidase respectively. Step wise addition of the three enzymes showed higher saccharification of lignocellulosics.  相似文献   

6.
从242株青霉属菌株中筛选出脂肪酶产生菌青霉-PG3。经鉴定,定名为卡门柏青霉(Penicillium camembertii Thom)。卡门柏青霉-PG3在由4%豆饼粉,0.5%糊精,0.75%橄榄油,0.5%K_2HPO_4,0.1%(NH_4)_2SO_4组成的液体培养基中,28℃,振荡培养96小时,发酵液脂肪酶活力(39℃,pH7.0)达60U/ml。PG3脂肪酶以橄榄油为底物,水解反应最适温度为48℃,最适pH为8.0。pH稳定范围6.0—11.0。Cu~(2+),Ca~(2+),Fe~(2+),Pb~(2+)等金属离子对酶活力有抑制作用。PG3脂肪酶对椰子油、菜籽油、亚麻油等油脂的水解率分别达到96%,94%和90%。  相似文献   

7.
Mutants of Salmonella typhimurium with defects in the heptose region of the lipopolysaccharide (LPS) molecule (heptose-deficient, chemotype Re) leak periplasmic enzymes (acid phosphatase (EC 3.1.3.2), cyclic phosphodiesterase, ribonuclease I (EC 3.1.4.22), and phosphoglucose isomerase (EC 5.3.1.9) (PGI is at least partially periplasmic in E. coli and S. typhimurium; see below)) and do not leak an internal enzyme (glucose-6-phosphate dehydrogenase) into the growth medium. The extent of this leakage is markedly increased at higher temperature (42 degrees C). Leakage of periplasmic enzymes from the strains lacking units distal to heptose I in the LPS molecule (chemotype Rd2) occurs only at 42 degrees C, and not at 30 or 37 degrees C. The extent of leakage of these enzymes from smooth strain and mutants of other LPS chemotypes (Rc, Rd1) is not significant, and is not influenced by growth temperatures. The kinetics of leakage of periplasmic enzymes after shift to 42 degrees C in nutrient broth reveal an accelerated release into the medium from heptose-deficient strains of cyclic phosphodiesterase and ribonuclease I after 30 min at 42 degrees C, and phosphoglucose isomerase after 60 min at 42 degrees C; at 30 degrees C the rate of release of cyclic phosphodiesterase and ribonuclease I is relatively slower. After 60 min at 42 degrees C in nutrient broth, growth of these strains has either slowed down or stopped. In L-broth, which permits the growth of the heptose-deficient strain (SA1377) at 42 degrees C, leakage of cyclic phosphodiesterase and phosphoglucose isomerase occurs, whereas there is no detectable leakage of these enzymes from the isogenic smooth strain (SA1355). Thus, leakage of the periplasmic enzymes from the heptose-deficient strain occurs with or without growth. Mg2+ (0.75 mM), sodium chloride (50 mM), and sucrose (100 mM) in nutrient broth at 42 degrees C prevent the leakage of these enzymes. The shedding of LPS from the heptose-deficient as well as the smooth strains is enhanced by high temperature (42 degrees C), whereas considerable leakage of protein occurs only in the heptose-deficient strain at 42 degrees C and not in the smooth strain. The smooth and heptose-deficient strains are equally sensitive to osmotic shock although a significant proportion of acid phosphatase and cyclic phosphodiesterase activities from the heptose-deficient cells grown at 42 degrees C comes off in the Tris-NaCl wash step suggesting a rather loose attachment of these enzymes onto the cell surface.  相似文献   

8.
Cyclomaltodextrin glucanotransferase [1,4-alpha-D-glucan-4-alpha-D-(1,4-alpha-D-glucano)-transferase (cyclizing), E.C.-2.4.1.19] of an alkalophilic Bacillus sp. No. 38-2 (ATCC 21783), which contains three types of enzymes (acid, neutral, and alkaline enzymes), was immobilized on synthetic adsorption resin. No distinguishing changes in pH or thermal stabilities of enzyme were observed due to the immobilization. Since acid-enzyme activity had disappeared, the optimum pH of immobilized enzyme was 9.0. Optimum temperature for the enzyme activity changed from 50 to 55 degrees C. The enzyme converted starch to cyclodextrins without significant loss of activity under the conditions of continuous reaction for about two weeks by using the column system (60 degrees C at pH 8.0). About 63% of soluble starch solution [4% (w/v)] was changed to cyclodextrins, as tested so far.  相似文献   

9.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21,000 and 36,000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10-12 (protease I) and pH 10.5 (protease II). The optimum temperture for the activity of protease I was 70 degrees C and that for protease II was 60 degrees C. Protease I was stable in the range of pH 4.0-8.0 up to 60 degrees C and protease II was stable in the range of pH 6.0-12.0 up to 50 degrees C.  相似文献   

10.
Bacillus sp. RK-1 was isolated as a bacterium that produced maltose phosphorylase (MPase) in the culture supernatant. Screening was done from among about 400 isolates that could grow at 55 degrees C in a medium containing maltose as the sole carbon source. The enzyme was purified to an electrophoretically homogeneous state and some properties were investigated. The Mr of the enzyme was estimated to be 170 kDa by gel filtration and 88.5 kDa by SDS-PAGE, suggesting that it consisted of two identical subunits. The enzyme showed optimum activity around pH 6.0-7.0 and the optimum temperature was about 65 degrees C. The enzyme was stable in the range of pH 5.5-8.0 after keeping it at 4 degrees C for 24 h and retained the activity up to about 55 degrees C after keeping it for 15 min. This is the first report about an MPase that could be produced in the culture supernatant. Furthermore, these investigations showed that this MPase is one of the most thermostable ones reported so far.  相似文献   

11.
A novel feather-degrading microorganism was isolated from poultry waste, producing a high keratinolytic activity when cultured on broth containing native feather. Complete feather degradation was achieved during cultivation. The bacterium presents potential use for biotechnological processes involving keratin hydrolysis. Chryseobacterium sp. strain kr6 was identified based on morphological and biochemical tests and 16S rRNA sequencing. The bacterium presented optimum growth at pH 8.0 and 30 degrees C; under these conditions, maximum feather-degrading activity was also achieved. Maximum keratinase production was reached at 25 degrees C, while concentration of soluble protein was similar at both 25 and 30 degrees C. Reduction of disulfide bridges was also observed, increasing with cultivation time. The keratinase of strain kr6 was active on azokeratin and azocasein as substrates, and presented optimum pH and temperature of 7.5 and 55 degrees C, respectively. The keratinase activity was inhibited by 1,10-phenanthroline, EDTA, Hg(2+), and Cu(2+) and stimulated by Ca(2+).  相似文献   

12.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

13.
An alkalophilic Aspergillus nidulans KK-99 produced an alkaline, thermostable xylanase (40 IU/ml) in a basal medium supplemented with wheat bran (2% w/v) and KNO3 (at 0.15% N) pH 10.0 and 37 degrees C. The partially purified xylanase was optimally active at pH 8.0 and 55 degrees C. The xylanase was stable in a broad pH range of 4.0-9.5 for 1 h at 55 degrees C, retaining more than 80% of its activity. The enzyme exhibited greater binding affinity for xylan from hardwood than from softwood. The xylanase activity was stimulated (+25%) by Na+ and Fe2+ and was strongly inhibited (maximum by 70%) by Tween-20, 40, 60, SDS, acetic anhydride, phenylmethane sulphonyl fluoride, Triton-X-100. The xylanase dose of 1.0 IU/g dry weight pulp gave optimum bleach boosting of Kraft pulp at pH 8.0 and temperature 55 degrees C for 3 h reaction time.  相似文献   

14.
Penicillium oxalicum produced two isozymes of polygalacturonase (PG) and a pectate lyase (PL). The enzymes were separated and purified following ammonium sulphate precipitation, ion exchange chromatography, ultrogel column chromatography and isoelectric focusing. The first isozyme of polygalacturonase (PGI) was rather unstable hence its properties could not be much assayed. PGII macerated and killed yam tissue in 4 hours but PL was unable to do so. Enzyme assay for the end-products of degradation of sodium polypectate and yam tissue showed that PGI was an exo-enzyme while PGII and PL were endo-enzymes. Endo-polygalacturonase (PGII) appears to play the major role (as the macerating enzyme) in the pathogenesis of yam tissue infected by P. oxalicum.  相似文献   

15.
It was shown that two metapyrocatechases (EC 1.13.11.2) function in Pseudomonas putida BS893. Biphenyl degradative plasmid pBS241 carries the genes of these enzymes. The basic properties of the both enzymes, i. e., MPC1 and MPC2, were investigated. It was found that MPC1 is an enzyme with a molecular mass of 135 kD and has a heterotetrameric subunit structure (alpha 2 beta 2), being made up of two non-identical polypeptides with Mr of 34 and 22.5 kD; pI is 5.15, the pH optimum is at 8.0, a temperature optimum is at 54 degrees C. MPC2 has a molecular mass of 154 kD and possesses a homotetrameric subunit structure (alpha 4); it consists of identical polypeptides with Mr of 41 kD and has a pI of 4.95, a pH optimum at 7.5 and a temperature optimum at 60 degrees C. The substrate specificity of the enzymes was studied, and the Km and Vmax values for substituted catechols were determined. MPC1 shows a high affinity for 2.3-dihydroxybiphenyl and hydrolyzes 3-methylcatechol and catechol (but not 4-methylcatechol) at a low rate. MPC2 has a moderate affinity for catechol, 3- and 4-methylcatechols, but is incapable of cleaving 2.3-dihydroxybiphenyl. Both enzymes share in common some typical properties of metapyrocatechases. The different role of MPC1 and MPC2 in biphenyl catabolism is discussed.  相似文献   

16.
Y Suzuki  Y Terai    S Abe 《Applied microbiology》1978,35(2):258-263
A riboflavin synthetase was purified 51-fold from a thermophilic organism, Bacillus stearothermophilus ATCC 8005, that grew at 40 to 72 degrees C. Some of the properties of the enzyme are: (i) its temperature optimum was 95 degrees C, and the activity was negligible below 40 degrees C; (ii) the Arrhenius plot of the initial reaction rates was concave upward, with a break at 65 degrees C, and the apparent activation energies below and above 65 degrees C were 4.2 X 10(4) and 6.7 X 10(4) J/mol, respectively; (iii) the enzyme was fairly stable up to 60 degrees C without 6,7-dimethyl-8-ribityllumazine; this substance protected the enzyme from inactivation above 60 to 97 degrees C; (iv) the pH range for stability was 6.0 to 10.0 at 26 degrees C and 6.3 to 7.6 at 55 degrees C; (v) the enzyme was highly resistant at 26 degrees C to denaturation in 8 M urea, but the tolerance was extremely low at 55 degrees C; (vi) its molecular weight was estimated at 45,000; (vii) the Km for 6,7-dimethyl-8-ribityllumazine was 23 micrometer at 55 degrees C and 29 micrometer at 75 degrees C; (viii) its pH optimum was 6.7 to 7.2; (ix) 6-methyl-7-hydroxy-8-ribityllumazine was a competitive inhibitor (Ki = 0.18 micrometer); (x) the activity was sensitive to heavy-metal ions and thiol reagents; (xi) the enzyme did not require cofactor or a carbon donor; and (xii) the molar ratio of 6,7-dimethyl-8-ribityllumazine consumption to riboflavin formation was 2 throughout the entire reaction. Properties i through vi distinguish this enzyme from riboflavin synthetases purified by other investigators from mesophilic organisms, Ashbya gossypii, Eremothecium ashbyii, Escherichia coli, yeast, and spinach.  相似文献   

17.
A riboflavin synthetase was purified 51-fold from a thermophilic organism, Bacillus stearothermophilus ATCC 8005, that grew at 40 to 72 degrees C. Some of the properties of the enzyme are: (i) its temperature optimum was 95 degrees C, and the activity was negligible below 40 degrees C; (ii) the Arrhenius plot of the initial reaction rates was concave upward, with a break at 65 degrees C, and the apparent activation energies below and above 65 degrees C were 4.2 X 10(4) and 6.7 X 10(4) J/mol, respectively; (iii) the enzyme was fairly stable up to 60 degrees C without 6,7-dimethyl-8-ribityllumazine; this substance protected the enzyme from inactivation above 60 to 97 degrees C; (iv) the pH range for stability was 6.0 to 10.0 at 26 degrees C and 6.3 to 7.6 at 55 degrees C; (v) the enzyme was highly resistant at 26 degrees C to denaturation in 8 M urea, but the tolerance was extremely low at 55 degrees C; (vi) its molecular weight was estimated at 45,000; (vii) the Km for 6,7-dimethyl-8-ribityllumazine was 23 micrometer at 55 degrees C and 29 micrometer at 75 degrees C; (viii) its pH optimum was 6.7 to 7.2; (ix) 6-methyl-7-hydroxy-8-ribityllumazine was a competitive inhibitor (Ki = 0.18 micrometer); (x) the activity was sensitive to heavy-metal ions and thiol reagents; (xi) the enzyme did not require cofactor or a carbon donor; and (xii) the molar ratio of 6,7-dimethyl-8-ribityllumazine consumption to riboflavin formation was 2 throughout the entire reaction. Properties i through vi distinguish this enzyme from riboflavin synthetases purified by other investigators from mesophilic organisms, Ashbya gossypii, Eremothecium ashbyii, Escherichia coli, yeast, and spinach.  相似文献   

18.
Phosphoglucose isomerase (PGI) is a multifunctional enzyme involved in glycolysis and gluconeogenesis and, in mammalian cells, functions as neuroleukin, autocrine motility factor (AMF), and differentiation and maturation factor (MF). We isolated and characterized PGI with a novel lysyl aminopeptidase (LysAP) activity (PGI-LysAP) from Vibrio vulnificus. Mass spectrometry revealed that PGI-LysAP is a heterodimer consisting of 23.4- and 60.8-kDa subunits. Only the heterodimer displayed LysAP activity. PGI-LysAP has a pI around 6.0 and high specificity toward the synthetic, fluorogenic substrate l-lysyl-7-amino-4-methylcoumarin. LysAP activity is optimal at pH 8.0, is 64% higher at 37 degrees C than at 21 degrees C, does not directly correlate with virulence, and is strongly inhibited by serine protease and metalloprotease inhibitors. PGI-LysAP was also identified in Vibrio parahaemolyticus and V. cholerae, but was absent from non-Vibrio human pathogens. Sequencing of the pgi gene revealed 1653 bp coding for a 550-amino-acid protein. Cloned and expressed PGI formed a homodimer with isomerase activity, but not LysAP activity. The finding of LysAP activity associated with heterodimeric PGI should foster a broad search for putative substrates in an effort to elucidate the role of PGI-LysAP in bacteria and its roles in the pathophysiology of diseases.  相似文献   

19.
20.
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号