首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thioltransferase in human red blood cells: kinetics and equilibrium   总被引:2,自引:0,他引:2  
Thioltransferase from human red blood cells (HRBC TTase), coupled to GSSG reductase, catalyzed glutathione (GSH)-dependent reduction of prototype substrates hydroxyethyl disulfide (HEDS) and sodium S-sulfocysteine as well as of other homo- and heterodisulfides, including the protein mixed disulfide albumin-S-S-cysteine. Whereas apparent KM values for the substrates varied over more than a 20-fold range, the Vmax values agreed quite closely, usually within less than a factor of 2, suggesting that initial interaction of oxidized substrate with enzyme is not rate determining. HRBC TTase was inactivated by iodoacetamide (IAA), and this was prevented by pretreatment with disulfides. The pH dependence of IAA inactivation gave a remarkably low apparent pKa of 3.5, which was independent of ionic strength (0.05-2 M). At pH 6, one radiolabeled carboxyamidomethyl moiety was bound to the enzyme after treatment with [14C]IAA. This unusual thiol reactivity suggests that the active-site cysteine moiety of the TTase may be involved in a hydrogen bond with a carboxylate moiety. In contrast, the pH dependence for GSH-dependent TTase catalysis of disulfide reduction displayed an inflection point near pH 8.0, also suggesting that the initial reaction of oxidized substrate with the active-site thiol is not involved in rate determination. Two substrate kinetic studies of HRBC TTase and rat liver TTase (e.g., [GSH] and [HEDS] varied independently) gave patterns of intersecting lines on double-reciprocal plots (1/v vs 1/S), indicating a sequential mechanism for the TTase reactions, rather than a ping-pong mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
By using site-directed mutagenesis techniques, the essential amino acids at the catalytic center of porcine thioltransferase (glutaredoxin) were determined. Seven oligonucleotides were designed, synthesized, and used to construct mutants, ETT-C22S, ETT-C25S, ETT-C25A, ETT-R26V, ETT-K27Q, ETT-R26V: K27Q, and ETT-C78S:C82S, by altering their codons in pig liver thioltransferase cDNA/M13mp18 clones. Each of the thioltransferases was purified to homogeneity and its dithiol-disulfide exchange, and dehydroascorbate reductase activities were compared with those of the wild-type (ETT). Evidence was obtained that Cys22 was essential for catalytic activity, and the extremely low pKa value of its sulfhydryl group was facilitated primarily by Arg26. The role of Lys27 at the active center was different from that of Arg26 and may be important in stabilizing the E.S intermediate by electrostatic forces. The second pair of cysteines, Cys78 and Cys82, nearer the C terminus, were not directly involved in the active center, but may play a role in defining the native protein structure. The replacement of the original Cys with a Ser at position 25 increased rather than decreased the enzyme activity, suggesting that the proposed intramolecular disulfide bond between Cys22 and Cys25 is not necessary for the catalytic mechanism of the Ser25 mutant, but does not rule out such a mechanism for the wild-type enzyme.  相似文献   

3.
Purification and properties of thioltransferase   总被引:3,自引:0,他引:3  
A protein, previously designated thioltransferase (Askelof, P., Axelsson, K., Eriksson, S., and Mannervik, B. (1974) FEBS Lett. 38, 263-267) was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and flatbed gel isoelectric focusing. The preparative procedure, a modification of that of Axelsson et al. (Axelsson, K., Eriksson, S., and Mannervik, B. (1978) Biochemistry 17, 2978-2984) and Hatakeyama et al. (Hatakeyama, M., Tanimoto, Y., and Mizoguchi, T. (1984) J. Biochem. (Tokyo) 95, 1811-1818) was faster and higher-yielding than the previous procedures. The purified enzyme has a molecular weight of 11,700 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 8.8. The amino acid composition of thioltransferase is reported, and it closely resembles that of calf thymus glutaredoxin. The optimal pH for this enzyme was 8.5 when S-sulfocysteine was used as a substrate. The plots of the activity of thioltransferase as a function of S-sulfocysteine and 2-hydroxyethyl disulfide concentrations showed sigmoidal relationships. The K0.5 for S-sulfocysteine was 0.6 mM. The enzyme was very sensitive to sulfhydryl alkylating reagents. Preincubation of the enzyme with disulfide compounds prevented the enzyme from inactivation by iodoacetamide but inhibited the thioltransferase activity in the absence of iodoacetamide. The results suggest that the active center of thioltransferase is cysteine dependent and that substrates may form mixed disulfides with the enzyme. Based on the iodoacetamide inactivation and disulfide protection of thioltransferase activity, a model for the catalytic mechanism of the thiol-disulfide oxidoreduction is proposed.  相似文献   

4.
Thioltransferase, an enzyme which catalyzes the thiol/disulfide exchange reaction in the presence of GSH, was purified to homogeneity on 15% SDS-PAGE from human (36,000-fold purification) and bovine (23,000-fold) erythrocyte hemolysates. These enzymes had similar properties in their monomeric structures (M(r) = 11,000) and broad specificities for substrates ranging from low-molecular disulfides (S-sulfocysteine, cystamine, and cystine) to protein disulfides (trypsin and insulin). They were highly sensitive to SH-reagents (monoiodoacetic acid and mercuric chloride), but were protected from inactivation by the presence of disulfides (GSSG, cystamine, and cystine). Phosphofructokinase and pyruvate kinase that had been inactivated by disulfides were reactivated effectively by the addition of thioltransferase with GSH. In addition, disulfides in membrane proteins of human erythrocytes that have been oxidatively damaged by diamide treatment were reduced to the SH-free form more effectively by incubation with thioltransferase.  相似文献   

5.
4-Nitrobenzyl [35S]mercaptan S-sulfonic acid ([35S]NBM S-sulfate), a new type of reactive metabolite of the thiol [35S]NBM in rat liver cytosol fortified with 3'-phosphoadenosine 5'-phosphosulfate, bound rapidly and covalently at pH 7.4 and 37 degrees C to the sulfhydryl groups of rat liver cytosolic proteins with formation of disulfide bonds. From the radioactive proteins was isolated and identified the sole amino acid adduct, S-([35S]NBM)cysteine, after their acid hydrolysis under the anaerobic conditions. Bovine serum albumin (BSA), a model protein with a single SH group, also reacted readily with radioactive NBM S-sulfate to form a disulfide bond in stoichiometric manner. S-([35S]NBM)-cysteine was also isolated and identified as the sole amino acid adduct from the well-washed, radioactive BSA after the same anaerobic acid hydrolysis. A normal hepatic level of GSH not only retarded the BSA-NBM adduct formation completely, but also detached the radioactivity from BSA by the reduction of the disulfide bond with formation of [35S]NBM and its disulfide. Of twenty-one amino acids examined at pH 7.4 and 37 degrees C, only cysteine reacted with NBM S-sulfate and afforded S-(NBM)cysteine with concomitant formations of S-sulfocysteine, cystine, NBM, and its disulfide.  相似文献   

6.
Yeast glyoxalase I was inactivated by arginine-specific reagents. Inactivation by 2,3-butanedione, phenylglyoxal and camphorquinone 10-sulfonic acid followed pseudo first-order kinetics with the rate dependent upon modifier concentration. Extrapolation to complete inactivation showed modification of approx. two of the ten total arginyl residues in the native enzyme, with approx. one residue protected by glutathione (GSH) as determined by [ring-14C]phenylglyoxal incorporation. GSH protected the enzyme from inactivation, whereas methylglyoxal, glutathione disulfide (GSSG) and dithiothreitol afforded partial protection. The hemimercaptal of methylglyoxal and GSH and the catalytic product, S-lactoylglutathione provided substantial protection from inactivation. A methyl ester placed on the glycyl carboxyl moiety of GSH abolished all protective capability which suggests that this functionality is responsible for binding to the enzyme. These results provide the first evidence concerning the molecular binding mode of GSH to an enzyme. Arginyl residues are proposed as anionic recognition sites for glutathione on other GSH-utilizing enzymes.  相似文献   

7.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity.  相似文献   

8.
Purification and some properties of bovine liver cytosol thioltransferase   总被引:1,自引:0,他引:1  
A cytosol thioltransferase was purified 37,000-fold from bovine liver by essentially the same procedure as reported for rat liver enzyme by Axelsson et al. [1978) Biochemistry 17, 2978-2984). The purified enzyme appears to be homogeneous on sodium dodecyl sulfate (SDS)-gel electrophoresis and has a molecular weight (Mr) of 11,000, an isoelectric point (pI) of 8.1, and an optimum pH with S-sulfocysteine and GSH as substrates of 8.5. It is specific for disulfides including L-cystine, S-sulfocysteine, ribonuclease A, trypsin, soybean kunitz trypsin inhibitor, soybean Bowman Birk trypsin inhibitor and insulin, and converts Bowman Birk trypsin inhibitor to an inactive form. The enzyme does not act as a protein : disulfide isomerase, as measured by reactivation of "scramble" ribonuclease and Kunitz soybean trypsin inhibitor. Thioltransferase activity was found in cytosol of various bovine tissues.  相似文献   

9.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

10.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

11.
Thioltransferase was purified 650-fold from rabbit liver by procedures including acid treatment, heat treatment, gel filtration on Sephadex G-50, column chromatography on DEAE-cellulose, isoelectric focusing (pH 3.5-10) and gel filtration on Sephadex G-75. The final enzyme preparation was almost homogeneous in polyacrylamide gel electrophoretic analysis. Only one active peak with an apparent molecular weight (Mr) of 13,000 was detected by gel filtration on Sephadex G-50 and only a single protein band with a molecular weight of 12,400 was detected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Isoelectric focusing revealed only one enzyme species, having an isoelectric point (pI) of 5.3. The enzyme has an optimum pH about 3.0 with S-sulfocysteine and GSH as substrates. The purified enzyme utilized some disulfides including S-sulfocysteine, alpha-chymotrypsin, trypsin, bovine serum albumin, and insulin as substrates in the presence of GSH. The enzyme does not act as a protein : disulfide isomerase (the activity of which can be measured in terms of reactivation of randomly reoxidized soybean Kunitz trypsin inhibitor). The enzyme activity was inhibited by chloramphenicol, but not by bacitracin. The inhibition by chloramphenicol was non-competitive (apparent K1 of 0.5 mM). Thioltransferase activity was found in the cytosol of various rabbit tissues.  相似文献   

12.
Combinations of substrate-binding sites and catalytic groups constitute various kinds of enzyme-like catalysts. The design of such catalysts can be evaluated by the enhancement of the overall catalytic activity by combining these parts into one catalyst. For a catalyst having one substrate-binding site and one catalytic group, an equation was obtained which shows the relationship between the rate-acceleration due to the combination, the affinity of the site (1/Kd), intrinsic effective concentration (kin/kex) and substrate concentration ([S]). The intrinsic effective concentration is the ratio of the first-order rate constant (kin) of the intramolecular reaction between the catalytic group and the bound substrate and the second-order rate constant (kex) of the intermolecular reaction between the catalytic group and the free substrate; the value depends on the method of linking the catalytic group and the binding site. This equation provides the following principles for designing catalysts of this type with a considerable grade of rate-acceleration: [S] less than or equal to kin/kex and (1/10)[S] less than or equal to Kd less than or equal to kin/kex. To increase kin/kex, the structure of the binding site is required not to reduce the reactivity of the bound substrate, and the linker connecting the binding site and the catalytic group is required to be flexible and to have an appropriate length. A subunit structure is also found to be effective to improve the catalytic activity: the activity of an n-mer is at most n2 times as high as that of the monomer. As for the substrate-binding sites, the sites of natural enzymes and antibodies are good candidates because various kinds of binding sites with high affinity and specificity to the corresponding substrates are available. In addition, the equation relating the rate-acceleration with Kd, kin/kex, and [S] is used for explaining the catalytic efficiency of enzymes energetically. The principle for designing a multifunctional catalyst having several kinds of binding sites for its substrates and intermediates and several kinds of catalytic groups was then investigated. In this case, the diffusion of the intermediates strongly affects the activity of the multifunctional catalyst, and such a diffusion process was also analyzed. On the basis of these analyses, the following principles were obtained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A thiol/disulfide oxidoreductase component of the GSH system, glutaredoxin (Grx), is involved in the reduction of GSH-based mixed disulfides and participates in a variety of cellular redox pathways. A single cytosolic Grx (Grx1) was previously described in mammals. We now report identification and characterization of a second mammalian Grx, designated Grx2. Grx2 exhibited 36% identity with Grx1 and had a disulfide active center containing the Cys-Ser-Tyr-Cys motif. Grx2 was encoded in the genomes of mammals and birds and expressed in a variety of cell types. The gene for human Grx2 consisted of four exons and three introns, spanned 10 kilobase pairs, and localized to chromosome 1q31.2-31.3. The coding sequence was present in all exons, with the first exon encoding a mitochondrial signal peptide. The mitochondrial leader sequence was also present in mouse and rat Grx2 sequences and was shown to direct either Grx2 or green fluorescent protein to mitochondria. Alternative splicing forms of mammalian Grx2 mRNAs were identified that differed in sequences upstream of exon 2. To functionally characterize the new protein, human and mouse Grx2 proteins were expressed in Escherichia coli, and the purified proteins were shown to reduce mixed disulfides formed between GSH and S-sulfocysteine, hydroxyethyldisulfide, or cystine. Grx1 and Grx2 were sensitive to inactivation by iodoacetamide and H(2)O(2) and exhibited similar pH dependence of catalytic activity. However, H(2)O(2)-inactivated Grx2 could only be reactivated with 5 mm GSH, whereas Grx1 could also be reactivated with dithiothreitol or thioredoxin/thioredoxin reductase. The Grx2 structural model suggested a common reaction mechanism for this class of proteins. The data provide the first example of a mitochondrial Grx and also indicate the occurrence of a second functional Grx in mammals.  相似文献   

14.
Thioltransferase, catalyzing thiol-disulfide interchange between reduced glutathione and disulfides, was purified to homogeneity from Saccharomyces cerevisiae. The purification procedure included ammonium sulfate precipitation, Sephadex G-50 gel filtration, CM-Sepharose ion exchange chromatography, and C18 reverse phase high pressure liquid chromatography. Two thioltransferase activity peaks were resolved by CM-Sepharose chromatography. The protein from the major peak had a molecular weight of 12 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis while the minor peak protein migrated slightly faster in this gel system. Both proteins showed similar amino acid compositions and identical N-termini. The major peak of thioltransferase was extensively characterized. Plots of thioltransferase activity as a function of S-sulfocysteine or hydroxyethyl disulfide concentration did not show normal Michaelis-Menten kinetics. The enzyme activity had a pH optimum of 9.1. The protein has 106 amino acid residues with two cysteines and no arginine. The active site amino acid sequence of the enzyme was identified as Cys26-Pro-Tyr-Cys29, which is similar to that of mammalian thioltransferase and Escherichia coli glutaredoxin. The two cysteines at the active site displayed different reactivities to iodoacetamide. Cys26 was alkylated by iodoacetamide at pH 3.5 while Cys29 was alkylated at pH 8.0. The enzyme was completely inactivated when the Cys26 was carboxymethylated. A plot of incorporation of iodoacetamide into Cys29 at different pHs was similar to the pH dependence of the enzyme activity. The result suggested that Cys26 could readily initiate nucleophilic attack on disulfide substrates at physiological pH.  相似文献   

15.
Cytosol from rodent liver was exposed to a variety of sulfhydryl-modifying reagents to determine if the cytosolic Ah receptor contained reactive sulfhydryl groups that were essential for preservation of the receptor's ligand binding function. At a 2 mM concentration in rat liver cytosol, all sulfhydryl-modifying reagents tested (except iodoacetamide) both blocked binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to unoccupied receptor and caused release of [3H]TCDD from receptor sites that had been labeled with [3H]TCDD before exposure to the sulfhydryl-modifying reagent. Exposure of cytosol to iodoacetamide before labeling with [3H]TCDD prevented subsequent specific binding of [3H]TCDD, but iodoacetamide was not effective at displacing previously bound [3H]TCDD from the Ah receptor. The mercurial reagents, mersalyl, mercuric chloride, and p-hydroxymercuribenzoate, were more effective at releasing bound [3H]TCDD from previously labeled sites than were alkylating agents (iodoacetamide, N-ethylmaleimide) or the disulfide compound 5,5'-dithiobis(2-nitrobenzoate). Presence of bound [3H]TCDD substantially protected the Ah receptor against loss of ligand binding function when the cytosol was exposed to sulfhydryl-modifying reagents. This may indicate that the critical sulfhydryl groups lie in or near the ligand binding site on the receptor. Subtle differences exist between the Ah receptor and the receptors for steroid hormones in response to a spectrum of sulfhydryl-modifying reagents, but the Ah receptor clearly contains a sulfhydryl group (or groups) essential for maintaining the receptor in a state in which it can bind ligands specifically and with high affinity.  相似文献   

16.
A multi-step procedure has been developed for the purification of [acyl-carrier-protein] acetyltransferase from Escherichia coli, which allows the production of small amounts of homogeneous enzyme. The subunit Mr was estimated to be 29,000 and the native Mr was estimated to be 61,000, suggesting a homodimeric structure. The catalytic properties of the enzyme are consistent with a Bi Bi Ping Pong mechanism and the existence of an acetyl-enzyme intermediate in the catalytic cycle. The enzyme was inhibited by N-ethylmaleimide and more slowly by iodoacetamide in reactions protected by the substrate, acetyl-CoA. However, the enzyme was apparently only weakly inhibited by the thiol-specific reagent methyl methanethiosulphonate. The nature of the acetyl-enzyme intermediate is discussed in relationship to that found in other similar enzymes from E. coli, yeast and vertebrates.  相似文献   

17.
Biotransformation of drugs and environmental chemicals to reactive intermediates is often studied with the use of radiolabeled compounds that are synthesized by expensive and technically difficult procedures. In general, glutathione (GSH) conjugation serves as a detoxification mechanism, and conjugation of reactive intermediates with GSH is often a surrogate marker of reactive species formation. However, several halogenated alkanes can be bioactivated by GSH to yield highly reactive GSH conjugates, some of which are DNA-reactive (e.g. conjugates of 1,2-dibromoethane). The purpose of this study was to metabolically radiolabel the in vivo GSH pool of Salmonella typhimurium with a [35S]-label and to examine the GSH-mediated bioactivation of a model haloalkane, 1,2-dibromoethane, by measuring the binding of [35S]-label to DNA. The strain of Salmonella used in this study had been transformed previously with the gene that codes for rat glutathione transferase theta 1-1 (GSTT1-1), an enzyme that can catalyze formation of genotoxic GSH conjugates. Bacteria were grown to mid-log phase and then incubated with [35S]-L-cysteine in minimal medium (thio-free) until stationary phase of growth was reached. At this stage, the specific activity of Salmonella GSH was estimated to be 7.1 mCi/mmol by derivatization and subsequent HPLC analysis, and GSTT1-1 enzyme activity was still demonstrable in Salmonella cytosol following growth in a minimal medium. The [35S]-labeled bacteria were then exposed to 1,2-dibromoethane (1 mM), and the Salmonella DNA was subsequently purified to quantify [35S]-binding to DNA. The amount of [35S]-label that was covalently bound to DNA in the GSTT1-1-expressing Salmonella strain (33.2 nmol/mg DNA) was sevenfold greater than that of the control strain that does not express GSTT1-1. Neutral thermal hydrolysis of the DNA yielded a single [35S]-labeled adduct with a similar t(R) as S-[2-(N(7)-guanyl)ethyl]GSH, following HPLC analysis of the hydrolysate. This adduct accounted for 95% of the total [35S]-label bound to DNA. Thus, this [35S]-radiolabeling protocol may prove useful for studying the DNA reactivity of GSH conjugates of other halogenated alkanes in a cellular context that maintains GSH at normal physiological levels. This is also, to our knowledge, the first demonstration of de novo incorporation of [35S]-L-cysteine into the bacterial GSH pool.  相似文献   

18.
Soluble, linear, uncross-linked peptidoglycans, prepared from two autolysis-defective mutants of Streptococcus faecium ATCC 9790 and from Micrococcus leuteus, were used as substrates for studies of hydrolysis by an N-acetylmuramoylhydrolase (muramidase). The kinetics of hydrolysis of these substrates and the ability of the muramidases isolated from S. faecium ATCC 9790 and from two autolysis-defective mutants, Lyt-14 and Aut-3, to carry out transglycosylation reactions were compared with the action of hen egg white lysozyme (EC 3.2.1.17). Hydrolysis of these substrates by the endogenous streptococcal muramidases resulted in the production of disaccharide-peptide monomers with the structure (formula; see text) as nearly the sole product. As estimated from increases in reducing groups, hydrolysis proceeded at a linear rate for extended intervals, with consumption of up to 75% of the substrate, even at substrate concentrations well below the Km value. Apparent Km and relative Vmax values for the three streptococcal enzymes were indistinguishable from each other or from those for hen egg white lysozyme. These results indicate that the autolysis-defective phenotype of these mutants cannot be attributed to differences in their muramidases. In contrast to the action of hen egg white lysozyme, the streptococcal muramidase failed to catalyze transglycosylations. The extended periods of hydrolysis at constant rates are consistent with the occurrence of multiple catalytic events after the formation of the enzyme-substrate complex.  相似文献   

19.
The resonance Raman spectra of several enzyme-substrate intermediates of papain, chymopapain, ficin and bromelain are reported. The intermediates are dithioacyl enzymes formed during the catalyzed hydrolysis of N-acylglycine thionoester substrates. Interpretation of the resonance Raman spectra allows us to compare, for the first time, the substrate geometries in a series of functioning intermediates from different enzymes. The substrates assume essentially identical conformations for papain, chymopapain and ficin and a similar, but not identical, conformation in the active site of bromelain. Each dithioacyl enzyme population appears to be made up of a single homogeneous conformational state. This state has been characterised in earlier studies of dithioacyl papains. It is designated as conformer B and is characterized by an attractive contact between the substrate's glycinic N atom and the active site cysteine S atom. It is now apparent that conformer B is of general significance in the mechanism of cysteine proteases.  相似文献   

20.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号