首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell envelope of gram-negative bacteria is responsible for many important biological functions: it plays a structural role, it accommodates the selective transfer of material across the cell wall, it undergoes changes made necessary by growth and division, and it transfers information about the environment into the cell. Thus, an accurate quantification of cell mechanical properties is required not only to understand physiological processes but also to help elucidate the relationship between cell surface structure and function. We have used a novel, atomic force microscopy (AFM)-based approach to probe the mechanical properties of single bacterial cells by applying a constant compressive force to the cell under fluid conditions while measuring the time-dependent displacement (creep) of the AFM tip due to the viscoelastic properties of the cell. For these experiments, we chose a representative gram-negative bacterium, Pseudomonas aeruginosa PAO1, and we used regular V-shaped AFM cantilevers with pyramid-shaped and colloidal tips. We find that the cell response is well described by a three-element mechanical model which describes an effective cell spring constant, k(1), and an effective time constant, tau, for the creep deformation. Adding glutaraldehyde, an agent that increases the covalent bonding of the cell surface, produced a significant increase in k(1) together with a significant decrease in tau. This work represents a new attempt toward the understanding of the nanomechanical properties of single bacteria while they are under fluid conditions, which could be of practical value for elucidating, for instance, the biomechanical effects of drugs (such as antibiotics) on pathogens.  相似文献   

2.
肌动蛋白的原子力显微镜研究   总被引:5,自引:1,他引:5  
原子力显微镜 (AFM )是一种能够在生理条件下对生物大分子、活细胞表面以及细胞膜下结构进行在体或离体研究的强有力的新型工具 ,具有原子级的成像分辨率和纳牛顿级的力测定功能。目前原子力显微镜已被广泛地应用于生物大分子、超分子体系的结构解析、动力学过程观察 ,分子力学研究及细胞功能鉴定。原子力显微镜能够通过尖锐探针扫描待测样品表面 ,收集被测样品表面地貌坐标数据从而对单分子或细胞进行成像或操作 ,并能通过移动探针、记录探针与样品之间的作用力 ,对生物大分子 (蛋白质、核酸和多糖等 )的结构力学特性进行分析以获取分子构象、功能及其相互关系的有用信息。肌动蛋白是一种细胞内普遍存在 ,具有广泛、复杂生理功能的重要蛋白质 ,原子力显微镜的各项功能已广泛地用于肌动蛋白结构、功能及动力学研究。通过综述原子力显微镜在肌动蛋白研究中的应用 ,阐明了原子力显微镜在现代生命科学研究中的重要意义及巨大应用前景。  相似文献   

3.
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico‐Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM—confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.  相似文献   

4.
Bioleaching of metal sulfides is an interfacial process comprising the interactions of attached bacterial cells and bacterial extracellular polymeric substances with the surface of a mineral sulfide. Such processes and the associated biofilms can be investigated at high spatial resolution using atomic force microscopy (AFM). Therefore, we visualized biofilms of the meso-acidophilic leaching bacterium Acidithiobacillus ferrooxidans strain A2 on the metal sulfide pyrite with a newly developed combination of AFM with epifluorescence microscopy (EFM). This novel system allowed the imaging of the same sample location with both instruments. The pyrite sample, as fixed on a shuttle stage, was transferred between AFM and EFM devices. By staining the bacterial DNA with a specific fluorescence dye, bacterial cells were labeled and could easily be distinguished from other topographic features occurring in the AFM image. AFM scanning in liquid caused deformation and detachment of cells, but scanning in air had no effect on cell integrity. In summary, we successfully demonstrate that the new microscopic system was applicable for visualizing bioleaching samples. Moreover, the combination of AFM and EFM in general seems to be a powerful tool for investigations of biofilms on opaque materials and will help to advance our knowledge of biological interfacial processes. In principle, the shuttle stage can be transferred to additional instruments, and combinations of AFM and EFM with other surface-analyzing devices can be proposed.  相似文献   

5.
For surface analysis of biological molecules, atomic force microscopy (AFM) is an appealing technique combining data acquisition under physiological conditions, for example buffer solution, room temperature and ambient pressure, and high resolution. However, a key feature of life, dynamics, could not be assessed until recently because of the slowness of conventional AFM setups. Thus, for observing bio-molecular processes, the gain of image acquisition speed signifies a key progress. Here, we review the development and recent achievements using high-speed atomic force microscopy (HS-AFM). The HS-AFM is now the only technique to assess structure and dynamics of single molecules, revealing molecular motor action and diffusion dynamics. From this imaging data, watching molecules at work, novel and direct insights could be gained concerning the structure, dynamics and function relationship at the single bio-molecule level.  相似文献   

6.
Monitoring biomolecular interactions by time-lapse atomic force microscopy   总被引:7,自引:0,他引:7  
The atomic force microscope (AFM) is a unique imaging tool that enables the tracking of single macromolecule events in response to physiological effectors and pharmacological stimuli. Direct correlation can therefore be made between structural and functional states of individual biomolecules in an aqueous environment. This review explores how time-lapse AFM has been used to learn more about normal and disease-associated biological processes. Three specific examples have been chosen to illustrate the capabilities of this technique. In the cell, actin polymerizes into filaments, depolymerizes, and undergoes interactions with numerous effector molecules (i.e., severing, capping, depolymerizing, bundling, and cross-linking proteins) in response to many different stimuli. Such events are critical for the function and maintenance of the molecular machinery of muscle contraction and the dynamic organization of the cytoskeleton. One goal is to use time-lapse AFM to examine and manipulate some of these events in vitro, in order to learn more about how these processes occur in the cell. Aberrant protein polymerization into amyloid fibrils occurs in a multitude of diseases, including Alzheimer's and type 2 diabetes. Local amyloid deposits may cause organ dysfunction and cell death; hence, it is of interest to learn how to interfere with fibril formation. One application of time-lapse AFM in this area has been the direct visualization of amyloid fibril growth in vitro. This experimental approach holds promise for the future testing of potential therapeutic drugs, for example, by directly visualizing at which level of fibril assembly (i.e., nucleation, elongation, branching, or lateral association of protofibrils) a given active compound will interfere. Nuclear pore complexes (NPCs) are large supramolecular assemblies embedded in the nuclear envelope. Transport of ions, small molecules, proteins, RNAs, and RNP particles in and out of the nucleus occurs via NPCs. Time-lapse AFM has been used to structurally visualize the response of individual NPC particles to various chemical and physical effectors known to interfere with nucleocytoplasmic transport. Taken together, such time-lapse AFM studies could provide novel insights into the molecular mechanisms of fundamental biological processes under both normal and pathological conditions at the single molecule level.  相似文献   

7.
原子力显微镜在生物学研究中的应用进展   总被引:2,自引:0,他引:2  
原子力显微镜(atomic force microscope,AFM)具有原子级分辨率,能够在生理条件下对生物样品进行观察,本综述了AFM的原理及技术要点,举例说明了它在核酸,蛋白质,微生物及细胞等领域的应用进展,相信AFM必将在生物学研究中起到越来越重要的作用。  相似文献   

8.
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.  相似文献   

9.
To achieve high-resolution topographs of native biological macromolecules in aqueous solution with the atomic force microscope (AFM) interactions between AFM tip and sample need to be considered. Short-range forces produce the submolecular information of high-resolution topographs. In contrast, no significant high-resolution information is provided by the long-range electrostatic double-layer force. However, this force can be adjusted by pH and electrolytes to distribute the force applied to the AFM tip over a large sample area. As demonstrated on fragile biological samples, adjustment of the electrolyte solution results in a local reduction of both vertical and lateral forces between the AFM tip and proteinous substructures. Under such electrostatically balanced conditions, the deformation of the native protein is minimized and the sample surface can be reproducibly contoured at a lateral resolution of 0.6 nm.  相似文献   

10.
The surface topography of red blood cells (RBCs) was investigated under near-physiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but non-invasive attachment of the cells. Using tapping-mode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circular-shaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane.  相似文献   

11.
The response of single breast cancer cells (cell line T-47D) to 17beta-estradiol (E(2)) under different concentrations was studied by using an instrument that allows to combine far-field light microscopy with high resolution scanning near-field (AFM/SNOM) microscopy on the same cell. Different concentrations of E(2) induce clearly different effects as well on cellular shape (in classical bright-field imaging) as on surface topography (atomic force imaging) and absorbance (near-field light transmission imaging). The differences range from a polygonal shape at zero via a roughly spherical shape at physiological up to a spindle-like shape at un-physiologically high concentrations. The surface topography of untreated control cells was found to be regular and smooth with small overall height modulations. At physiological E(2) concentrations the surfaces became increasingly jagged as detected by an increase in membrane height. After application of the un-physiological high E(2) concentration the cell surface structures appeared to be smoother again with an irregular fine structure. The general behaviour of dose dependent differences was also found in the near-field light transmission images. In order to quantify the treatment effects, line scans through the normalised topography images were drawn and a rate of co-localisation between high topography and high transmission areas was calculated. The cell biological aspects of these observations are, so far, not studied in detail but measurements on single cells offer new perspectives to be empirically used in diagnosis and therapy control of breast cancers.  相似文献   

12.
13.
《Trends in biotechnology》2002,20(8):S45-S49
Atomic force microscopy (AFM) has become a well-established technique for imaging single biomacromolecules under physiological conditions. The exceptionally high spatial resolution and signal-to-noise ratio of the AFM enables the substructure of individual molecules to be observed. In contrast to other methods, specimens prepared for AFM remain in a plastic state, which enables direct observation of the dynamic molecular response, creating unique opportunities for studying the structure–function relationships of proteins and their functionally relevant assemblies. This review presents recent advances in methods and applications of AFM to imaging biological samples. It is clear that AFM will become an increasingly important tool for probing both the structural and kinetic properties of biological macromolecules.  相似文献   

14.
Atomic force microscopy (AFM) has proven to be a powerful tool in biological sciences. Its particular advantage over other high-resolution methods commonly used is that biomolecules can be investigated not only under physiological conditions but also while they perform their biological functions. Single-molecule force spectroscopy with AFM tip-modification techniques can provide insight into intermolecular forces between individual ligand-receptor pairs of biological systems. Here we present protocols for force spectroscopy of living cells, including cell sample preparation, tip chemistry, step-by-step AFM imaging, force spectroscopy and data analysis. We also delineate critical steps and describe limitations that we have experienced. The entire protocol can be completed in 12 h. The model studies discussed here demonstrate the power of AFM for studying transmembrane transporters at the single-molecule level.  相似文献   

15.
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research.  相似文献   

16.
叶志义  范霞 《生命科学》2009,(1):156-162
细胞表面的力学性质会随着细胞所处环境的不同而发生改变,它的变化间接反映出胞内复杂的生理过程。原子力显微镜(atomic force microscope,AFM)能以高的灵敏度和分辨率检测活体细胞,通过利用赫兹模型分析力曲线可以获得细胞的弹性信息。本文简介了原子力显微镜的工作原理与工作模式,着重介绍利用AFM力曲线检测细胞弹性的方法及其在细胞运动、细胞骨架、细胞黏附、细胞病理等方面的应用成果,表明AFM已经成为细胞弹性研究中十分重要的显微技术。  相似文献   

17.
This review briefly introduces the principles of atomic force microscopy (AFM) applied to protein samples. AFM provides three-dimensional surface images of the proteins with high resolution. The advantage of AFM for protein studies is that AFM can visualize directly the molecule under physiological conditions without previous treatment. AFM operated in the force-spectroscopy mode is now a widespread technique, often used to investigate ligand receptor interactions with the goal of measuring forces at the individual molecule level.  相似文献   

18.
Summary Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains ofKalanchoe blossfeldiana andZea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs ofRaphanus sativus andZ. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts ofZ. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized.Abbreviations AFM atomic force microscope - FESEM field emission scanning electron microscope - PyMS pyrolysis mass spectrometry - TEM transmission electron microscope  相似文献   

19.
Atomic force microscopy (AFM) is a specialised form of scanning probe microscopy, which was invented by Binnig and colleagues in 1986. Since then, AFM has been increasingly used to study biomedical problems. Because of its high resolution, AFM has been used to examine the topography or shape of surfaces, such as during the molecular imaging of proteins. This, combined with the ability to operate under known force regimes, makes AFM technology particularly useful for measuring intermolecular bond forces and assessing the mechanical properties of biological materials. Many of the constraints (e.g. complex instrumentation, slow acquisition speeds and poor vertical range) that previously limited the use of AFM in cell biology are now beginning to be resolved. Technological advances will enable AFM to challenge both confocal laser scanning microscopy and scanning electron microscopy as a method for carrying out three-dimensional imaging. Its use as both a precise micro-manipulator and a measurement tool will probably result in many novel and exciting applications in the future. In this article, we have reviewed some of the current biological applications of AFM, and illustrated these applications using studies of the cell biology of bone and integrin-mediated adhesion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号