首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract The complete dnaJ gene of Clostridium acetobutylicum was isolated by chromosome walking using the previously cloned 5' end of the gene as a probe. Nucleotide sequencing of a positively reacting 2.2-kb Hin cII fragment, contained in the recombinant plasmid pKG4, revealed that the reading frame of the dnaJ gene of C. acetobutylicum consists of 1125 bp, encoding a protein of 374 amino acids with a calculated M r of 40376 and an isoelectric points of 9.54. The deduced amino acid sequence showed high similarity to the DnaJ proteins of other bacteria (e.g. Escherichia coli, Bacillus subtilis ) as well as of an archaeon ( Methanosarcina mazei ) and to the corresponding proteins of eukaryotes ( Saccharomyces cerevisiae, Homo sapiens ). The areas of similarity included a conserved N-terminal domain of about 70 amino acids, a glycine-rich region of about 30 residues, and a central domain containing four repeats of a CXXCXGXG motif, whereas the C-terminal domain was less conserved. Northern (RNA) blot analysis indicated that dnaJ is induced by heat shock and that it is part of the dnaK operon of C. acetobutylicum . The 5' end (901 bp) of another gene ( orfB ), downstream of dnaJ and not heat-inducible, showed no significant similarity to other sequences available in EMBL and GenBank databases.  相似文献   

3.
The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed.  相似文献   

4.
The collagenase from Clostridium histolyticum (EC 3.4.24.3) degrades type IV collagen with Km 32 nM, indicating a high affinity for this substrate. Ferrous and ferric ions can inhibit Clostridium collagenase. Inhibition by Fe++ was of the mixed, non-competitive type, with Ki 90 microM. The inhibitory effect of Fe++ may be due to Zn++ displacement from the intrinsic functional center of this metalloprotease, since in the presence of excess amounts of Zn++ enzyme activity is retained. This inhibitory effect of Fe++ may be common for all types of collagenases, since this ion can also inhibit type IV collagenase purified from Walker 256 carcinoma, with IC50 80 microM. Cu++ can only partially inhibit Clostridium collagenase, while other divalent metal ions such as Cd++, Co++, Hg++, Mg++, Ni++ or Zn++ are devoid of any inhibitory effect on the enzyme.  相似文献   

5.
A cryptic citrate transport gene (citA) from Salmonella typhimurium chromosome was cloned and its nucleotide sequence was determined. The cloned plasmid conferred citrate-utilizing ability on wild-type Escherichia coli, which cannot grow on citrate as the sole source of carbon. The resultant E. coli transformant was able to transport citrate. A 1,302-base-pair open reading frame with a preceding ribosomal binding site was found in the cloned DNA fragment. The 434-amino-acid protein that could be translated from this open reading frame is highly hydrophobic (69% nonpolar amino acid residues), consistent with the fact that the transport protein is an intrinsic membrane protein. The molecular weight of this protein was calculated to be 47,188. The gene sequence determined is highly homologous to those of Cit+ plasmid-mediated citrate transport gene, citA, from E. coli, the chromosomal citA gene from Citrobacter amalonaticus and the chromosomal cit+ gene from Klebsiella pneumoniae. The hydropathy profile of the deduced amino acid sequence suggests that this carrier has 12 hydrophobic segments, which may span the membrane lipid bilayer.  相似文献   

6.
7.
Boticin B is a heat-stable bacteriocin produced by Clostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18. 8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene, btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing the HindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.  相似文献   

8.
The chloramphenicol resistant gene (cat) encoding chloramphenicol acetyltransferase (CAT) in a transferable R plasmid (pJA7324) isolated from the fish pathogen Vibrio anguillarum strain PT24 was cloned into the plasmid vector pUC19. The nucleotide sequence analysis of 1,348 base pair DNA identified an open reading frame encoding a protein of 216 amino acid residues with a calculated molecular mass of 25,471 daltons. The predicted amino acid sequences for this cat gene are 37-69% homologous with other CAT proteins of both Gram-negative and -positive bacteria. Colony hybridization performed with a PvuII-BamHI fragment including this cat gene as a probe, revealed that the same or similar chloramphenicol resistance genes existed among V. anguillarum isolates.  相似文献   

9.
10.
Clostridium perfringens type C NCIB 10662 produced various gelatinolytic enzymes with molecular masses ranging from approximately 120 to approximately 80 kDa. A 120-kDa gelatinolytic enzyme was present in the largest quantity in the culture supernatant, and this enzyme was purified to homogeneity on the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme was identified as the major collagenase of the organism, and it cleaved typical collagenase substrates such as azocoll, a synthetic substrate (4-phenylazobenzyloxy-carbonyl-Pro-Leu-Gly-Pro-D-Arg [Pz peptide]), and a type I collagen fibril. In addition, a gene (colA) encoding a 120-kDa collagenase was cloned in Escherichia coli. Nested deletions were used to define the coding region of colA, and this region was sequenced; from the nucleotide sequence, this gene encodes a protein of 1,104 amino acids (M(r), 125,966). Furthermore, from the N-terminal amino acid sequence of the purified enzyme which was found in this reading frame, the molecular mass of the mature enzyme was calculated to be 116,339 Da. Analysis of the primary structure of the gene product showed that the enzyme was produced with a stretch of 86 amino acids containing a putative signal sequence. Within this stretch was found PLGP, the amino acid sequence constituting the Pz peptide. This sequence may be implicated in self-processing of the collagenase. A consensus zinc-binding sequence (HEXXH) suggested for vertebrate Zn collagenases is present in this bacterial collagenase. Vibrio alginolyticus collagenase and Achromobacter lyticus protease I showed significant homology with the 120-kDa collagenase of C. perfringens, suggesting that these three enzymes are evolutionarily related.  相似文献   

11.
Abstract A genomic library of Clostridium septicum NCTC547 strain was made in Escherichia coli by means of λgt10. The DNA insert of a hemolysin-positive (Hly+) λ-clone was transferred into pUC19. The resulting plasmid, pCS21, confers a Hly+ phenotype on E. coli . Crude lysates of E. coli (pCS21) possessed a strong lytic activity on human erythrocytes and also a lethal effect on mice, characteristic of an α toxin. Nucleotide sequence analysis revealed that the insert DNA (5.2 kb) in pCS21 included at least one open reading frame of 1380 bp. The coding frame for hemolysin was predicted to be 1329 bp in size and to encode a protein of 49.8 kDa. It coincided with the molecular mass (48 kDa) of the α toxin secreted by C. septicum . Taken together, the data indicated that plasmid pCS21 indeed encoded an α toxin gene of C. septicum .  相似文献   

12.
A structural gene encoding bovine (b) tryptophanyl-tRNA synthetase (WRS) has recently been cloned and sequenced [Garret et al., Biochemistry 30 (1991) 7809-7817]. Using part of this sequence as a hybridisation probe we have cloned and sequenced a structural gene encoding human polypeptide highly homologous with two mammalian proteins, bWRS [Garret et al., Biochemistry 30 (1991) 7809-7817; EMBL accession No. X52113] and rabbit peptide chain release factor [Lee et al., Proc. Natl. Acad. Sci. USA 87 (1990) 3508-3512]. Identification of the sequence encoding a human WRS is based on (i) the presence of 'HIGH' and 'KMSKS' structural motifs typical for class-I aminoacyl-tRNA synthetases [Eriani et al., Nature 347 (1990) 203-206]; (ii) coincidence of the number of SH groups per subunit estimated experimentally [Muench et al., Science 187 (1975) 1089-1091] and deduced from the cDNA sequence (six in both cases); (iii) close resemblance of two WRS polypeptides sequenced earlier [Muench et al., Science 187 (1975) 1089-1091] and the predicted structure in two different regions.  相似文献   

13.
14.
15.
16.
R Sugasawara  E Harper 《Biochemistry》1984,23(22):5175-5181
Three collagenases from Clostridium histolyticum, designated C1, C2, and C3, with apparent molecular weights of 96 000, 92 000, and 76 000 were purified. Peptide maps of the enzymes prepared by digestion with Staphylococcus aureus V-8 protease were found to be similar. Cleavage of native C1 with alpha-chymotrypsin or V-8 protease yielded C2 and C3. This suggested that proteolysis of the Mr 96 000 collagenase may have occurred in vivo, producing the other two lower molecular weight enzymes. Previously prepared antiserum directed against a form of the bacterial enzyme similar by molecular weight and charge to collagenase C3 and Fab' fragments generated from this antiserum inhibited the collagenolytic activity. C1, C2, and C3 were immunologically identical by Ouchterlony double diffusion, and C3 was able to compete with C1 for the antiserum binding site. The ability of each enzyme to bind to antiserum raised against the bacterial collagenase supported the hypothesis that these three proteins were closely related. Zinc analyses of C1 and C3 resulted in a value of 1.14 mol of zinc/mol of C1 and 0.82 mol of zinc/mol of C3. C1 did not contain carbohydrate as measured by gas-liquid chromatography or periodic acid-Schiff staining.  相似文献   

17.
L V Wray  S H Fisher 《Gene》1988,71(2):247-256
The Streptomyces coelicolor glutamine synthetase (GS) structural gene (glnA) was cloned by complementing the glutamine growth requirement of an Escherichia coli strain containing a deletion of its glnALG operon. Expression of the cloned S. coelicolor glnA gene in E. coli cells was found to require an E. coli plasmid promoter. The nucleotide sequence of an S. coelicolor 2280-bp DNA segment containing the glnA gene was determined and the complete glnA amino acid sequence deduced. Comparison of the derived S. coelicolor GS protein sequence with the amino acid sequences of GS from other bacteria suggests that the S. coelicolor GS protein is more similar to the GS proteins from Gram-negative bacteria than it is with the GS proteins from two Gram-positive bacteria, Bacillus subtilis and Clostridium acetobutylicum.  相似文献   

18.
19.
R E Galardy  D Grobelny 《Biochemistry》1983,22(19):4556-4561
Di- and tripeptides with sequences present in collagen that are known to occupy the S1' through S3' subsites at the active site of the collagenase from Clostridium histolyticum do not themselves inhibit this zinc protease. Thus glycylproline, glycylprolylalanine, and their C-terminal amides are not inhibitors. N alpha-Phosphorylglycylproline, N alpha-phosphorylglycyl-L-prolyl-L-alanine, and their C-terminal amides are weak inhibitors with IC50's (concentration causing half-maximal inhibition) of 4.6, 0.8, 3, and 1.5 mM, respectively. Extension of glycyl-L-prolyl-L-alanine to L-leucyl-glycyl-L-prolyl-L-alanine gives a tetrapeptide known to occupy the S1, S1', S2', and S3' subsites of collagenase when present in collagen but that still does not itself inhibit the enzyme. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine, a peptide containing a tetrahedral phosphorus atom at the position of the amide carbonyl carbon of the L-leucylglycyl amide bond of the parent tetrapeptide, inhibits collagenase with an IC50 of 16 microM, at least 1000-fold more potent than the parent peptide. Substitution of the two-carbon ethyl chain of alanine for the five-carbon isoamyl chain of leucine increases the IC50 to 46 microM. Substitution of the n-decyl chain for the isoamyl chain does not change the IC50. (Isoamylphosphonyl)glycyl-glycyl-L-proline contains a tripeptide that does not occupy the S1' through S3' subsites of collagenase when this peptide is present in collagen and thus has an IC50 of 4.4 mM. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine may be an analogue of the tetrahedral transition state for the hydrolysis of the natural collagen substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The production of a freeze-dried enzymatic preparation from the category of crude collagenases has been described. The method is based on the utilization of a highly proteolytic Clostridium histolyticum strain whose products have more advantageous properties for therapeutic purposes than the products of the strain commonly used as yet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号