首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sarcolemmal Na(+)-Ca2+ exchanger is regulated by intracellular Ca2+ at a high affinity Ca2+ binding site separate from the Ca2+ transport site. Previous data have suggested that the Ca2+ regulatory site is located on the large intracellular loop of the Na(+)-Ca2+ exchange protein, and we have identified a high-affinity 45Ca2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use electrophysiological and mutational analyses to further define the Ca2+ regulatory site. Wild-type and mutant exchangers were expressed in Xenopus oocytes, and the exchange current was measured using the inside- out giant membrane patch technique. Ca2+ regulation was measured as the stimulation of reverse Na(+)-Ca2+ exchange (intracellular Na+ exchanging for extracellular Ca2+) by intracellular Ca2+. Single-site mutations within two acidic clusters of the Ca2+ binding domain lowered the apparent Ca2+ affinity at the regulatory site from 0.4 to 1.1-1.8 microM. Mutations had parallel effects on the affinity of the exchanger loop for 45Ca2+ binding (Levitsky et al., 1994) and for functional Ca2+ regulation. We conclude that we have identified the functionally important Ca2+ binding domain. All mutant exchangers with decreased apparent affinities at the regulatory Ca2+ binding site also have a complex pattern of altered kinetic properties. The outward current of the wild-type Na(+)-Ca2+ exchanger declines with a half time (th) of 10.8 +/- 3.2 s upon Ca2+ removal, whereas the exchange currents of several mutants decline with th values of 0.7-4.3 s. Likewise, Ca2+ regulation mutants respond more rapidly to Ca2+ application. Study of Ca2+ regulation has previously been possible only with the exchanger operating in the reverse mode as the regulatory Ca2+ and the transported Ca2+ are then on opposite sides of the membrane. The use of exchange mutants with low affinity for Ca2+ at regulatory sites also allows demonstration of secondary Ca2+ regulation with the exchanger in the forward or Ca2+ efflux mode. In addition, we find that the affinity of wild-type and mutant Na(+)-Ca2+ exchangers for intracellular Na+ decreases at low regulatory Ca2+. This suggests that Ca2+ regulation modifies transport properties and does not only control the fraction of exchangers in an active state.  相似文献   

2.
Mediation by Ca2+ of TRH action on the PRL promoter was investigated by both additivity and pharmacological studies and by techniques that probe more gene-proximal events. TRH required the presence of Ca2+ in the medium for stimulation of transient expression in GH3 cells of a PRL-chloramphenicol acetyltransferase (PRL-CAT) construct containing proximal PRL promoter sequences [(-187)PRL-CAT]. Chronic 12-O-tetradecanoyl phorbol-13-acetate down-regulation of cellular protein kinase C did not block induction of expression of (-187)PRL-CAT by either Ca2+ or TRH. In studies with Ca2+ blockers, the Ca2+ flux inhibitors cobalt ion and nimodipine blocked induction of (-187)PRL-CAT expression by either Ca2+ or TRH. On the other hand, the Ca2+ immobilizers 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyltetraester and 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate blocked induction of expression of this construct by Ca2+ but not by TRH, suggesting that TRH regulation of the PRL promoter may be dependent on Ca2+ fluxes but insensitive to Ca2+ immobilization. We have shown previously that the PRL promoter pit-1 binding site 1P is a TRH response element. In the present studies, Ca2+ regulation studies with 5'-deletion mutants of (-204)PRL-CAT showed that (-75)PRL-CAT, containing the single pit-1 binding site 1P, also contains a Ca2+ response element. The observation that two copies of a site 1P oligomer transferred a Ca2+ response to either of the two minimal constructs (-39)PRL-CAT or (-39)mouse metallothionein-CAT showed that site 1P is an independent Ca2+ response element. Analysis of site 1P mutants yielded a strong correlation between the ability to bind pit-1 and to transfer a Ca2+ response. In addition, coexpression of a mutant pit-1 possessing reduced trans-activational activity strongly inhibited TRH regulation of (-187)PRL-CAT and partially blocked Ca2+ regulation of this construct. We conclude that Ca2+ mediates TRH action on the PRL promoter, and that pit-1 represents a gene-proximal mediator in this signalling pathway.  相似文献   

3.
Calmodulin (CaM) may function as a regulatory subunit of ryanodine receptor (RYR) channels, modulating both channel activation and inhibition by Ca2+; however, mechanisms underlying differences in CaM regulation of the RYR isoforms expressed in skeletal muscle (RYR1) and cardiac muscle (RYR2) are poorly understood. Here we use a series of CaM mutants deficient in Ca2+ binding to compare determinants of CaM regulation of the RYR1 and RYR2 isoforms. In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites. In contrast to the RYR1, no activation of the cardiac RYR2 isoform by wild-type CaM was observed, but rather CaM inhibited the RYR2 at all Ca2+ concentrations (100 nM to 1 mM). Consequently, whereas the apparent Ca2+ sensitivity of the RYR1 isoform was enhanced in the presence of CaM, the RYR2 displayed the opposite response (RYR2 Ca2+ EC50 increased 7-10-fold in the presence of 5 microM wild-type CaM). CaM inhibition of the RYR2 was nonetheless abolished by each of four mutations targeting individual CaM Ca2+ sites. Furthermore, a mutant CaM deficient in Ca2+ binding at all four Ca2+ sites significantly activated the RYR2 and acted as a competitive inhibitor of RYR2 regulation by wild-type Ca2+CaM. We conclude that Ca2+ binding to CaM determines the effect of CaM on both RYR1 and RYR2 channels and that isoform differences in CaM regulation reflect the differential tuning of Ca2+ binding sites on CaM when bound to the different RYRs. These results thus suggest a novel mechanism by which CaM may contribute to functional diversity among the RYR isoforms.  相似文献   

4.
Sarcolemma isolated from guinea pig heart ventricles possessed ATP-dependent Ca2+ binding and accumulation (+ oxalate) activities which were not inhibited by sodium azide, oligomycin, or ruthenium red. Ca2+ binding and accumulation by sarcolemma were sensitive to pH, the optimum being about pH 6.8. The concentrations of ATP required for half-maximal binding and accumulation were 94.3 and 172 muM, respectively. Mg2+ up to 5 mM significantly enhanced both activities but was inhibitory at higher concentrations (greater than 10 mM). Sarcolemmal Ca2+ binding and accumulation were stimulated 100% by K+, half-maximal enhancement occurring at 5-10 mM K+. Ca2+ binding and accumulation were both saturable processes and the respective apparent Km values for Ca2+ were 16.4 and 14.3 muM. Ca2+ binding by sarcolemma was a rapid process and the bound Ca2+ was released upon depletion of ATP in the medium. It is suggested that the sarcolemmal Ca2+ transport system may well be of significance in regulation of the contraction-relaxation cycle of cardiac muscle.  相似文献   

5.
The mobilization of internally sequestered stores of Ca2+ and activation of protein kinase C appear to be involved in neutrophil activation. We have examined the inter-relationship of these two pathways by investigating the effects of modulating Ca2+ activity on the binding of [3H]phorbol 12,13-dibutyrate (PDBU) to protein kinase C in intact phagocytes. Differentiated HL-60 cells were equilibrated with [3H]PDBU prior to stimulation with various agents known to alter Ca2+ homeostasis in cells. Agents that elevated cytosolic Ca2+, such as f-Met-Leu-Phe and A23187, up-regulated radioligand binding by increasing the affinity of the PDBU/protein kinase C interaction. These effects were time- and agonist concentration-dependent and temperature-sensitive. The kinetics of the up-regulation of binding by f-Met-Leu-Phe coincided with the kinetics of Ca2+ mobilization (by quin2 fluorescence measurements). The putative intracellular Ca2+ antagonist 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate alone down-regulated [3H]PDBU binding and inhibited the up-regulation of ligand binding by f-Met-Leu-Phe and A23187. Low concentrations of La3+ (0.1-10 microM) also inhibited up-regulation of radioligand binding to f-Met-Leu-Phe and A23187, whereas higher concentrations (0.1-1 mM) alone increased [3H] PDBU binding and supported further up-regulation of ligand binding by the Ca2+-mobilizing agents. These data suggest a role for Ca2+ in the regulation of phorbol diester binding to protein kinase C in intact cells.  相似文献   

6.
Microcalorimetric titrations of bullfrog (Rana catesbeiana) skeletal troponin C with Ca2+ were carried out in the absence of Mg2+ at 25 degrees C and at pH 7.0. The observed enthalpy titration curve was divided into three stages. The first stage of the titration (up to 2 mol of Ca2+/mol of protein) was characterized as an extremely exothermic process (delta H = -52 kJ/mol of site), the second one (titration from 2 to 3 mol of Ca2+/mol of protein) as a weakly endothermic process (delta H = +26 kJ/mol of site), and the final one (over 3 mol of Ca2+/mol of protein) as a moderately exothermic process (delta H = -35 kJ/mol of site). The endothermic process of Ca2+ binding to the third site (the second stage) has the same property as that of the Ca2+ binding to every site of calmodulin but is distinctly different from those of the calmodulin-trifluoperazine complex and parvalbumins. This may suggest that an endothermic nature of Ca2+ binding, the reaction being driven solely by entropy change, is characteristic of the regulatory reactions of Ca2+ binding proteins accompanying the interaction with other proteins. The third Ca2+ binding site of bullfrog troponin C is, therefore, possibly involved in the regulation of muscle contraction.  相似文献   

7.
Whereas an important aspect of sensory adaptation in rod photoreceptors and olfactory receptor neurons is thought to be the regulation of cyclic nucleotide-gated (CNG) channel activity by calcium-calmodulin (Ca2+-CaM), it is not clear that cone photoreceptor CNG channels are similarly modulated. Cone CNG channels are composed of at least two different subunit types, CNGA3 and CNGB3. We have investigated whether calmodulin modulates the activity of these channels by direct binding to the CNGB3 subunit. Heteromeric channels were formed by co-expression of human CNGB3 with human CNGA3 subunits in Xenopus oocytes; CNGB3 subunits conferred sensitivity to regulation by Ca2+-CaM, whereas CaM regulation of homomeric CNGA3 channels was not detected. To explore the mechanism underlying this regulation, we localized potential CaM-binding sites in both NH2- and COOH-terminal cytoplasmic domains of CNGB3 using gel-overlay and glutathione S-transferase pull-down assays. For both sites, binding of CaM depended on the presence of Ca2+. Individual deletions of either CaM-binding site in CNGB3 generated channels that remained sensitive to regulation by Ca2+-CaM, but deletion of both together resulted in heteromeric channels that were not modulated. Thus, both NH2- and COOH-terminal CaM-binding sites in CNGB3 are functionally important for regulation of recombinant cone CNG channels. These studies suggest a potential role for direct binding and unbinding of Ca2+-CaM to human CNGB3 during cone photoreceptor adaptation and recovery.  相似文献   

8.
Monolayer cultures of human embryonal smooth muscle cells (HEC) were used to study the heterologous regulation of membrane beta-adrenergic receptors and Ca2+ channels. The relationships between the activation of membrane bound alpha-1 and beta-adrenergic receptors, the cyclic nucleotide response and Ca2+ channel binding were studied in a cellular model of latent virus infection (Herpes simplex, Type-2) in a human embryonal cell line. In the early stage of infection (72 h), there was a significant increase in the cell cAMP content, followed by a decrease in the binding capacity of the beta-adrenergic ligand with an increased total number of the 1,4-dihydropyridine Ca2+ channel agonist (-)-S-(3H)BAYK 8644 binding sites on the cell membrane of infected cells. The increased numbers of Ca2+ agonist binding sites were accompanied by an increased cAMP content in the cells and an increased membrane ATP-ase activity. Down-regulation of (3H)DHA binding, and an increased capacity of Ca2+ agonist binding were found after prolonged exposure of HEC to isoprenaline (10(-5) mol.l-1). Stimulation of alpha-1 adrenergic receptors with phenylephrine (10(-6) mol.l-1) was accompanied with only slight but significant increase in (3H)DHA binding and with a significant reduction in the total number of Ca2+ channel agonist binding sites.  相似文献   

9.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

10.
Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been shown to modify receptor-mediated Ca2+ responses in a variety of cells. To assess its possible role in modulating voltage-dependent Ca2+ responses, we examined the effect of tumor-promoting phorbol esters, which activate protein kinase C, on Ca2+ channel function in the PC12 neural cell line. Phorbol 12-myristate 13-acetate reduced K+-depolarization-evoked 45Ca uptake and decreased binding of the Ca2+ channel antagonist [3H] (+)PN200-110 to intact cells. Inhibition of binding was markedly reduced in PC12 membranes, but was restored by reconstituting membranes with protein kinase C activity. Protein kinase C may therefore participate in endogenous regulation of voltage-dependent Ca2+ channels in mammalian neural cells.  相似文献   

11.
Kinetic properties of Ca2+, Mg2+-ATPases membranes from acinar cells of rat submandibular salivary glands have been investigated. It was found that kinetics of ATP hydrolysis dependent on Ca2+, Mg2+-ATPases corresponds to the first-order reaction during first 2 min. It was found that the initial velocity of the reaction (V0), maximal amount of the reaction product (Pmax) and characteristic time of the reaction (T) comprised 1.8 +/- 0.4 and 1.6 +/- 0.2 mmole Pi/min per 1 mg protein, 7.5 +/- 1.3 and 1.4 +/- 0.2 mmole Pi/mg protein and 4.1 +/- 0.7 min and 1.1 +/- 0.1 for Ca2+-ATPases from plasma and endoplasmic reticulum membranes, correspondingly. High- and low-affinity sites of ATP and Ca2+-binding in Ca2+-ATPases from plasma and endoplasmic reticulum membranes were identified. Negative cooperation in ATP binding to Ca2+-ATPase from plasma membrane and a positive cooperation for Ca2+-ATPase from endoplasmic reticulum has been found. Ca2+ binding to low-affinity sites of both Ca2+-ATPases showed no cooperation, while Ca2+ binding to high-affinity sites showed the positive cooperation. Using the Hill's coordinates we have found the values of the Mg2+ Michaelis constant (K(Mg)) which yielded 3.89 x 10(-5) and 3.80 x 10(-5) mole/l for Ca2+-ATPases from plasma and endoplasmic reticulum membranes, correspondingly. It is supposed that obtained data are important for further studies of molecular and membrane mechanisms involved in the regulation of intracellular calcium signalling and secretion by salivary acinar cells.  相似文献   

12.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

13.
E A Nalefski  A C Newton 《Biochemistry》2001,40(44):13216-13229
Conventional isoforms of protein kinase C (PKC) are activated when their two membrane-targeting modules, the C1 and C2 domains, bind the second messengers diacylglycerol (DG) and Ca2+, respectively. This study investigates the mechanism of Ca2+-induced binding of PKC betaII to anionic membranes mediated by the C2 domain. Stopped-flow fluorescence spectroscopy reveals that Ca2+-induced binding of the isolated C2 domain to anionic vesicles proceeds via at least two steps: (1) rapid binding of two or more Ca2+ ions to the free domain with relatively low affinity and (2) diffusion-controlled association of the Ca2+-occupied domain with vesicles. Ca2+ increases the affinity of the C2 domain for anionic membranes by both decreasing the dissociation rate constant (k(off)) and increasing the association rate constant (k(on)) for membrane binding. For binding to vesicles containing 40 mol % anionic lipid in the presence of 200 microM Ca2+, k(off) and k(on) are 8.9 s(-1) and 1.2 x 10(10) M(-1) x s(-1), respectively. The k(off) value increases to 150 s(-1) when free Ca2+ levels are rapidly reduced, decreasing the average lifetime of the membrane-bound C2 domain (tau = k(off)(-1)) from 110 ms in the presence of Ca2+ to 6.7 ms when Ca2+ is rapidly removed. Experiments addressing the role of electrostatic interactions reveal that they stabilize either the initial C2 domain-membrane encounter complex or the high-affinity membrane-bound complex. Specifically, lowering the phosphatidylserine mole fraction or including MgCl2 in the binding reaction decreases the affinity of the C2 domain for anionic vesicles by both reducing k(on) and increasing k(off) measured in the presence of 200 microM Ca2+. These species do not affect the k(off) value when Ca2+ is rapidly removed. Studies with PKC betaII reveal that Ca2+-induced binding to membranes by the full-length protein proceeds minimally via two kinetically resolvable steps: (1) a rapid bimolecular association of the enzyme with vesicles near the diffusion-controlled limit and, most likely, (2) subsequent conformational changes of the membrane-bound enzyme. As is the case for the C2 domain, k(off) for full-length PKC betaII increases when Ca2+ is rapidly removed, reducing tau from 11 s in the presence of Ca2+ to 48 ms in its absence. Thus, both the C2 domain and the slow conformational change prolong the lifetime of the PKC betaII-membrane ternary complex in the presence of Ca2+, with rapid membrane release triggered by removal of Ca2+. These results provide a molecular basis for cofactor regulation of PKC whereby the C2 domain searches three-dimensional space at the diffusion-controlled limit to target PKC to relatively common anionic phospholipids, whereupon a two-dimensional search is initiated by the C1 domain for the more rare, membrane-partitioned DG.  相似文献   

14.
Lung transplant recipients (LTx) exhibit marked peripheral limitations to exercise. We investigated whether skeletal muscle Ca2+ and K+ regulation might be abnormal in eight LTx and eight healthy controls. Peak oxygen consumption and arterialized venous plasma [K+] (where brackets denote concentration) were measured during incremental exercise. Vastus lateralis muscle was biopsied at rest and analyzed for sarcoplasmic reticulum Ca2+ release, Ca2+ uptake, and Ca2+-ATPase activity rates; fiber composition; Na+-K+-ATPase (K+-stimulated 3-O-methylfluorescein phosphatase) activity and content ([3H]ouabain binding sites); as well as for [H+] and H+-buffering capacity. Peak oxygen consumption was 47% less in LTx (P < 0.05). LTx had lower Ca2+ release (34%), Ca2+ uptake (31%), and Ca2+-ATPase activity (25%) than controls (P < 0.05), despite their higher type II fiber proportion (LTx, 75.0 +/- 5.8%; controls, 43.5 +/- 2.1%). Muscle [H+] was elevated in LTx (P < 0.01), but buffering capacity was similar to controls. Muscle 3-O-methylfluorescein phosphatase activity was 31% higher in LTx (P < 0.05), but [3H]ouabain binding content did not differ significantly. However, during exercise, the rise in plasma [K+]-to-work ratio was 2.6-fold greater in LTx (P < 0.05), indicating impaired K+ regulation. Thus grossly subnormal muscle calcium regulation, with impaired potassium regulation, may contribute to poor muscular performance in LTx.  相似文献   

15.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

16.
《The Journal of cell biology》1994,124(6):1061-1070
Transition of leukocyte function-associated antigen-1 (LFA-1), from an inactive into an activate state depends on the presence of extracellular Mg2+ and/or Ca2+ ions. Although Mg2+ is directly involved in ligand binding, the role of Ca2+ in LFA-1 mediated adhesion remained obscure. We now demonstrate that binding of Ca2+, but not Mg2+, directly correlates with clustering of LFA-1 molecules at the cell surface of T cells, thereby facilitating LFA-1-ligand interaction. Using a reporter antibody (NKI-L16) that recognizes a Ca(2+)-dependent epitope on LFA-1, we found that Ca2+ can be bound by LFA-1 with different strength. We noticed that weak binding of Ca2+ is associated with a dispersed LFA-1 surface distribution on T cells and with non- responsiveness of these cells to stimuli known to activate LFA-1. In contrast, stable binding of Ca2+ by LFA-1 correlates with a patch-like surface distribution and vivid ligand binding after activation of LFA- 1. Mg(2+)-dependent ligand binding does not affect binding of Ca2+ by LFA-1 as measured by NKI-L16 expression, suggesting that Mg2+ binds to a distinct site, and that both cations are important to mediate adhesion. Only Sr2+ ions can replace Ca2+ to express the L16 epitope, and to induce clustering of LFA-1 at the cell surface. We conclude that Ca2+ is involved in avidity regulation of LFA-1 by clustering of LFA-1 molecules at the cell surface, whereas Mg2+ is important in regulation of the affinity of LFA-1 for its ligands.  相似文献   

17.
A myosin II is thought to be the driving force of the fast cytoplasmic streaming in the plasmodium of Physarum polycephalum. This regulated myosin, unique among conventional myosins, is inhibited by direct Ca2+ binding. Here we report that Ca2+ binds to the first EF-hand of the essential light chain (ELC) subunit of Physarum myosin. Flow dialysis experiments of wild-type and mutant light chains and the regulatory domain revealed a single binding site that shows moderate specificity for Ca2+. The regulatory light chain, in contrast to regulatory light chains of higher eukaryotes, is unable to bind divalent cations. Although the Ca2+-binding loop of ELC has a canonical sequence, replacement of glutamic acid to alanine in the -z coordinating position only slightly decreased the Ca2+ affinity of the site, suggesting that the Ca2+ coordination is different from classical EF-hands; namely, the specific "closed-to-open" conformational transition does not occur in the ELC in response to Ca2+. Ca2+- and Mg2+-dependent conformational changes in the microenvironment of the binding site were detected by fluorescence experiments. Transient kinetic experiments showed that the displacement of Mg2+ by Ca2+ is faster than the change in direction of cytoplasmic streaming; therefore, we conclude that Ca2+ inhibition could operate in physiological conditions. By comparing the Physarum Ca2+ site with the well studied Ca2+ switch of scallop myosin, we surmise that despite the opposite effect of Ca2+ binding on the motor activity, the two conventional myosins could have a common structural basis for Ca2+ regulation.  相似文献   

18.
Catalytic and regulatory binding sites for ATP on the red cell Ca2+ pump have been investigated using fluorescein isothiocyanate (FITC). Both (Ca2+ + Mg2+)-ATPase activity and ATP-dependent Ca2+ flux are selectively and irreversibly inactivated by FITC and the pump is protected from FITC by the presence of ATP. The time course of inactivation by FITC is characteristically biphasic. Analysis of the kinetics of inactivation by FITC and protection by ATP reveals the participation of both high and low affinity binding sites for ATP and FITC. The sites binding ATP or reacting with FITC do not, however, appear to co-exist on the same enzyme molecules. Thus, "flip-flop" mechanisms for (Ca2+ + Mg2+)-ATPase, involving negative interactions between high and low affinity ATP sites, are considered unlikely. The two affinities for ATP are most simply explained by assuming that the Ca2+ pump protein exists in alternative conformational forms, E1 having a high affinity for ATP and E2 having a low affinity for ATP. Ca2+ pumping and (Ca2+ + Mg2+)-ATPase involve interconversion between these forms. It is suggested that regulation of Ca2+ pump activity by Mg-ATP reflects acceleration of the conformational transition between the E1 and E2 forms, as well as a previously described acceleration of phosphoenzyme hydrolysis (Muallem, S., and Karlish, S. J. D. (1981) Biochim. Biophys. Acta 647, 73-86; Garrahan, P. J., and Rega, A. F. (1978) Biochim. Biophys. Acta 513, 59-65).  相似文献   

19.
In skeletal muscle the L-type Ca2+ channel directly controls the opening of the sarcoplasmic reticulum Ca2+ release channel (RYR1), and RYR1, in turn, prevents L-type Ca2+ channel inactivation. We demonstrate that the two proteins interact using calmodulin binding regions of both proteins. A recombinant protein representing amino acids 1393-1527 (D1393-1527) of the carboxyl-terminal tail of the skeletal muscle L-type voltage-dependent calcium channel binds Ca2+, Ca2+ calmodulin, and apocalmodulin. In the absence of calmodulin, D1393-1527 binds to both RYR1 and a peptide representing the calmodulin binding site of RYR1 (amino acids 3609-3643). In addition, biotinylated R3609-3643 peptide can be used with streptavidin beads to pull down [3H]PN200-110-labeled L-type channels from detergent-solubilized transverse tubule membranes. The binding of the L-type channel carboxyl-terminal tail to the calmodulin binding site on RYR1 may stabilize the contact between the two proteins, provide a mechanism for Ca2+ and/or calmodulin regulation of their interaction, or participate directly in functional signaling between these two proteins. A unique aspect of this study is the finding that calmodulin binding sequences can serve as specific binding motifs for proteins other than calmodulin.  相似文献   

20.
瞬时受体电位(TRP)通道是一类钙离子透过性的阳离子通道蛋白家族,参与了视觉、味觉、温度感受等重要的生物学过程。之前的研究表明,钙离子既能够正反馈也能够负反馈地调节瞬时受体电位通道的活性,而这种调节可能是通过钙调蛋白(calmodulin,CaM)与TRP通道的相互作用来进行的。为了阐明这一调控机制,我们首先需要对钙调蛋白与瞬时受体电位通道之间的相互作用进行详细的生化研究。在此项研究中,通过大肠杆菌表达系统,表达和纯化了果蝇瞬时受体电位通道羧基末端不同长短的蛋白片段,并发现了一个新的钙调蛋白结合位点。通过快速蛋白液相色谱、静态光散射以及等温量热滴定技术,鉴定了这一钙调蛋白结合位点与果蝇瞬时受体电位通道之间的相互作用,发现它们在钙离子依赖的条件下,可以形成亲和力非常强的稳定的蛋白复合物(解离常数在01~1微摩尔范围)。此外,通过合成多肽的方法,鉴定了果蝇瞬时受体电位通道913~939片段为该钙调蛋白结合位点的核心区域。最后,通过突变实验,进一步明确了果蝇瞬时受体电位通道922位的酪氨酸以及923位的缬氨酸为其钙调蛋白结合位点的关键氨基酸。总而言之,本研究发现和鉴定了果蝇瞬时受体电位通道上一个新的钙依赖的钙调蛋白结合位点,这一发现将为研究瞬时受体电位通道的体内功能提供生化基础,为阐明钙离子通过钙调蛋白调节瞬时受体电位通道的分子机制做出贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号