首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The binding of the dopamine uptake inhibitor [3H] GBR-12935 to 16 regions of the human brain was investigated in competition experiments with increasing concentrations of GBR-12909, mazindol, and dopamine. The methodology used included a relatively high tissue concentration (8 mg/ml) and addition of 5 m M KCI in the assay buffer. GBR-12909 inhibited 80–90% of the binding in most regions, whereas dopamine only inhibited the binding in the striatum. Mazindol inhibited only part of the cortical binding at concentrations of >1 μ M , whereas the inhibition in the caudate and the putamen also contained a high-affinity component representing the dopamine uptake site. It is concluded that the [3H] GBR-12935 binding sensitive to GBR-12909 cannot be regarded as specific binding to the dopamine uptake site because the displaceable binding most likely is not related to the dopamine uptake site.  相似文献   

2.
High-affinity and saturable binding sites for the diphenyl-substituted piperazine derivative [3H]GBR-12935 have been characterized in crude synaptosomal membranes prepared from rat brain. The specific binding of [3H]GBR-12935 is sodium-dependent and is unevenly distributed among various brain regions, with the highest concentration of binding sites being found in the corpus striatum and nucleus accumbens. Sodium-dependent [3H]GBR-12935 binding in all other brain areas was 10% or less of the binding found in the striatum. The affinity of [3H]GBR-12935 for binding sites in the striatum is increased in the presence of Na+ but other cations, including K+, Ca2+, or Mg2+, inhibit specific binding. There is an excellent correlation (r = 0.96, p less than 0.01) between the potencies of a series of drugs in inhibiting [3H]GBR-12935 binding to striatal membranes and their potencies in inhibiting [3H]3,4-dihydroxyphenylethylamine ([3H]dopamine) uptake in synaptosomes. Agonists and antagonists of other neurotransmitter receptor or drug recognition sites have little or no effect on specific [3H]GBR-12935 binding to striatal membranes. In addition, prior intracerebroventricular administration of 6-hydroxydopamine results in a decrease in the number of specific [3H]GBR-12935 binding sites in the striatum. These data indicate that [3H]GBR-12935 is a selective radioligand of the presynaptic dopamine transport complex in brain.  相似文献   

3.
Abstract: The presence of multiple [3H] GBR-12935 binding sites in the human brain has been revealed in several recent studies. One site represents the dopamine uptake site. In rat brain it was demonstrated that [3H] GBR-12935 also binds to nondopaminergic "piperazine acceptor sites." One of these sites has been identified as cytochrome P450IID1 in canine brain. [3H] GBR-12935 binding to the piperazine acceptor sites in the human brain was investigated in the present study. A pharmacological definition of the piperazine acceptor sites is presented: the [3H]- GBR-12935 binding fraction that could be discriminated by 10 μ M GBR-12909 in the presence of 0.3 μ M mazindol. This binding fraction was saturable, with binding affinity in the range of 3–8 n M. It was also demonstrated that the piperazine acceptor or cytochrome P450-sensitive drugs cis -flupentixol and proadifen (SKF 525 A) compete for the same binding sites, suggesting the cytochrome P450 nature of the binding. The findings presented support the proposal that at least part of this fraction represents cytochrome P450IID6, the human form of P450IID1. The distribution of [3H] GBR-12935 binding to the suggested P450IID6-site in 12 brain regions was examined, without significant differences in binding densities between the regions. The significance of the present findings on the cytochrome P450 system in brain is discussed.  相似文献   

4.
Abstract— The specific binding of [3H]spiperone and [3H]domperidone, as defined by 1 μ m -(+)butaclamol, was compared in homogenates of bovine retina and caudate nucleus. Scatchard analyses of saturation data for [3H]spiperone binding yielded dissociation constants ( K d) of 0.35 n m in the retina and 0.64 n m in the caudate nucleus. Comparison of the maximum number of binding sites (Bmax) present in each tissue indicated that the density of sites in bovine caudate nucleus (270 fmol/mg protein) was approximately three times higher than in bovine retina (92 fmol/mg protein). This difference was even more marked in guinea pig tissues, with a ratio of 7:1 between corpus striatum and retina. The pharmacological analysis of [3H]spiperone binding in both the bovine retina and caudate nucleus indicated an interaction with dopaminergic rather than serotonergic sites. However, inhibition curves obtained to dopaminergic agonists in the bovine retina were significantly steeper than those observed in the bovine caudate nucleus, as reflected in the greater Hill coefficients obtained for these agents in the retina. Furthermore, only a small amount of specific [3H]domperidone binding was observed in either the bovine caudate nucleus or the guinea pig striatum, whilst no specific [3H]domperidone binding was detectable in homogenates of either bovine or guinea pig retina. These data suggest that the retina possesses only a small population of dopaminergic D2 sites and that these binding sites may differ from those present in the caudate nucleus.  相似文献   

5.
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons.  相似文献   

6.
The neuronal dopamine transporter/uptake site can be covalently labeled with the photoaffinity probe 1-(2-[bis-(4-fluorophenyl) methoxy]ethyl)-4-[2-(4-azido-3-[125I]iodophenyl)ethyl]piperazine [( 125I]FAPP) and visualized following sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Upon photolysis, [125I]FAPP specifically incorporated into a polypeptide of apparent Mr = 62,000 in membranes from both the putamen and the caudate nucleus of control, Alzheimer's, schizophrenia, and Huntington's diseased brain, and following complete deglycosylation, migrated as an Mr approximately 48,000 polypeptide. In parkinsonian postmortem putamen, however, there was no detectable photoincorporation of [125I]FAPP into the ligand binding subunit of the dopamine transporter. [125I]FAPP did specifically label the Mr 62,000 polypeptide of parkinsonian caudate, although with efficiencies of 20-50% of control. The asymmetrical loss of the dopamine transporter in Parkinson's diseased striatum was confirmed in reversible receptor binding experiments using [3H]GBR-12935 (3H-labeled 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenylpropyl)piperazine). In parkinsonian putamen, mazindol competitively inhibited the binding of [3H]GBR-12935 with an estimated affinity (Ki approximately 2,000 nM) 10 times lower than in controls (Ki approximately 30 nM), while the affinity of maxindol for [3H]GBR-12935 binding in the caudate was equal to that seen with controls (Ki approximately 50 nM). The proportion of [3H]GBR-12935 binding sites recognized by mazindol with high affinity in Parkinson's diseased caudate was, however, reduced by 50-80%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Certain drugs exhibit a remarkable correlation between their ability to inhibit synaptosomal uptake of dopamine and the binding of [3H]mazindol to striatal membranes. To investigate the role of mazindol binding sites in the dopamine uptake process and the fate of these sites (labeling dopaminergic neurons) during aging, we have examined the properties of mazindol binding and dopamine uptake in individual young and old rats. There was a 48% decrease (p = 0.0001) in the Bmax of mazindol binding and a 23% decrease (p = 0.0166) in the Vmax of dopamine uptake with no apparent change in their affinities with age. Regression analysis of the relationship between Bmax and Vmax exhibited a significant correlation in old (p = 0.0156) but not young rats (p = 0.1398). These data suggest that the number of mazindol binding sites decreases with age and that the number of sites on the dopamine transporter complex far exceeds the number required to elicit maximal dopamine uptake.  相似文献   

8.
Abstract— [3H]Spiperone binding has been used to study neurotransmitter receptors in bovine caudate nucleus in displacement and saturation binding experiments. Displacement curves for several antagonists are biphasic and can be analysed into contributions from dopaminergic and serotonergic sites. Antagonist binding at each class of sites follows the simple mass action equations for binding at a homogeneous set of sites (slope factors close to unity). Agonist displacement curves also indicate complex behaviour, but agonist binding to the dopaminergic sites alone exhibits heterogeneous properties (slope factors less than unity). Saturation binding experiments have been conducted on each class of site, defining dopaminergic binding of [3H]spiperone as that binding displaced by 0.1 m m -dopamine and serotonergic binding as that displaced by 0.3 μ m -mianserin. In each case, a single class of binding sites was detected: the binding parameters derived in this way have been used to calculate the proportions of the two classes of binding site observed in displacement experiments. Good agreement was obtained between calculated and observed values.  相似文献   

9.
Binding characteristics of the selective dopamine uptake inhibitor [3H]GBR 12935 have been described for the striatum but not for the frontal cortex. We have developed assay conditions for quantifying [3H]GBR 12935 binding in the frontal cortex. In both the rat and human frontal cortex, the assay required four times more tissue (8 mg/ml) than in the striatum (2 mg/ml). [3H]GBR 12935 binding in the frontal is complex, as it involves multiple binding sites. The high-affinity binding site is sodium dependent and is inhibited by sodium. In human but not in rat frontal cortex, addition of K+ reversed the sodium inhibition. The pharmacological profile of the high-affinity [3H]GBR 12935 binding site is consistent with that of the dopamine transporter, because drugs with the most selective dopamine reuptake blocking activities are the most potent displacers of [3H]GBR 12935 binding. There is a positive correlation between the rat and human inhibitory constants, a finding indicating that there are similar pharmacological profiles across at least these two species. Rats with a 6-hydroxydopamine lesion had a 47% decrease in number of [3H]GBR 12935 binding sites, a result indicating that at least a portion of these sites had been on presynaptic dopamine terminals.  相似文献   

10.
Abstract: Slices of rabbit caudate and hypothalamus take up and accumulate [3H]imipramine. In superfused slices of both structures electrical stimulation or exposure to tyramine failed to release recently taken up [3H]imipramine. De-polarization by exposure to 30–60 mm-potassium caused only a small release of [3H]imipramine that was not concentration-dependent. The release of [3H]imipramine by high potassium was independent of the presence of calcium ions in the superfusion medium. These results contrasted with those obtained for the release of [3H]dopamine from the caudate and [3H]noradrenaline from the hypothalamus, where tyramine, electrical stimulation, and high potassium caused a significant release of the labeled neurotransmitters. The release of [3H]dopamine from the caudate and [3H]noradrenaline from the hypothalamus elicited by electrical stimulation or high potassium was entirely calcium-dependent. It is concluded that [3H]imipramine is taken up into the two brain regions and is accumulated in a nonvesicular site from which it is not released by calcium-dependent depolarizing stimuli.  相似文献   

11.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

12.
Abstract: Binding of the selective dopamine (DA) uptake inhibitor [3H]GBR 12935 to rat striatal membranes was characterized biochemically and pharmacologically. [3H]-GBR 12935 binding at 0°C was reversible and saturable and Scatchard analysis indicated a single binding site with a KD of 5.5 nM and a Bmax of 760 pmol/mg tissue. [3H]GBR 12935 labeled two binding sites. One binding site was identified as the classic DA uptake site, since methylphenidate, cocaine, diclofensine, and Lu 19–005 potently inhibited [3H]GBR 12935 binding to it. Binding to the second site was inhibited by high concentrations of the above compounds. IC50 values for inhibition of [3H]GBR 12935 binding to the DA uptake site were proportional to IC50 values for inhibition of DA uptake. However, substrates of DA uptake, e.g., DA and 1-methyl-4-phenylpyridine, and DA releasers, e.g., the amphetamines, inhibited [3H]GBR 12935 binding less than DA uptake. Rate experiments excluded the possibility that these “weak” inhibitors affected the binding by alloste-ric coupled binding sites. The second binding site was not a noradrenergic, serotonergic, or GABAergic uptake site. Neither was it a dopaminergic, acetylcholinergic, histaminic, serotonergic, or adrenergic receptor. However, [3H]GBR 12935 was potently displaced from it by disubstituted piper-azine derivatives, i.e., flupentixol and piflutixol. DA uptake and the DA uptake binding site of [3H]GBR 12935 were located primarily in the striatum, but the piperazine acceptor site was distributed uniformly throughout the brain. Also only the DA uptake binding site was destroyed by 6-OH-DA. Thus, [3H]GBR 12935 labels the classic DA uptake site in rat striatum and also a piperazine acceptor site. Substrates for DA uptake and releasers of DA inhibited [3H]GBR 12935 binding with low potency, but did not alter the rate constants for [3H]GBR 12935 binding. Therefore inhibitors of DA uptake label the carrier site and prevent the carrier process.  相似文献   

13.
The effect of dopamine (DA) on the binding of [3H]phorbol 12,13-dibutyrate ([3H]PdBu) in cultured rat striatal cells was examined. DA maximally increased specific [3H]PdBu binding by 70 +/- 10%, an increase comparable to that observed with norepinephrine (NE). This finding suggests that DA activates protein kinase C in cultured striatal cells, because increases in [3H]PdBu binding reflect translocation of protein kinase C. Half-maximal stimulation was observed with 10(-6) M DA. The peak response was observed at 2-3 min after addition of 10(-4) M DA, but [3H]PdBu binding was still increased above basal at 30 min. DA was not acting via an adrenergic receptor. Prazosin (10(-6) M) blocked the response to NE, suggesting mediation by an alpha 1-adrenergic receptor, but had little effect on the response to DA. Conversely, the D1 receptor antagonist SCH-23390 (10(-6) M) blocked the response to DA, but only partially inhibited the response to NE. Morphine (10(-6) M) inhibited the response to DA by 46 +/- 14%, but did not affect significantly the response to NE. The DA effect on [3H]PdBu binding is apparently independent of the increase in cyclic AMP seen on D1 receptor activation. Forskolin, apomorphine, and the D1 agonist SKF-38393 all increased cyclic AMP in striatal cells, but were less effective than DA in stimulating [3H]PdBu binding. The D2 agonist quinpirole was ineffective in stimulating either cyclic AMP or [3H]PdBu binding.  相似文献   

14.
15.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

16.
Abstract: In contrast to striatal membranes of adult rats, where high- ( K D1= 34 n M ) and low- ( K D2= 48,400 n M ) affinity binding sites for [3H]WIN 35,428 are present, in primary cultures of ventral mesencephalon neurons (CVMNs) only low-affinity binding sites were found ( K D= 336,000 n M ). The binding of [3H]WIN 35,428 in CVMNs prepared from rat embryos was reversible, saturable, and located in cytosol. Although dopamine (DA) uptake blockers inhibited [3H]DA uptake at nanomolar concentrations in CVMNs, the displacement of [3H]WIN 35,428 binding in CVMNs by DA uptake inhibitors required 100-8,000 times higher concentrations than were needed to displace [3H]WIN 35,428 binding in striatal membranes. Piperazine derivatives, e.g., GBR-12909, GBR-12935, and rimcazole, inhibited [3H]WIN 35,428 binding in CVMNs more effectively than did cocaine, WIN 35,428, mazindol, nomifensine, or benztropin. A positive correlation ( r = 0.779; p < 0.001) was found between drug affinities for the striatal membrane sites labeled by [3H]WIN 35,428 and their abilities to inhibit DA uptake in CVMNs, whereas no correlation existed between the IC50 values of drugs that inhibited [3H]WIN 35,428 binding and [3H]DA uptake in CVMNs. The cytosolic [3H]WIN 35,428 binding sites may be a piperazine acceptor and may not be involved in the regulation of the DA transporter.  相似文献   

17.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

18.
The incorporation of [3H]myo-inositol into individual phosphoinositides and of [3H]glycerol into glycerolipids was determined in sciatic nerve obtained from normal and streptozotocin diabetic rats and incubated in vitro. The uptake of inositol into lipid was approximately linear with time. More than 80% of the label was present in phosphatidylinositol with the remainder divided about equally between phosphatidylinositol phosphate and phosphatidylinositol-4,5-bisphosphate. Labeling was unchanged 2 weeks after induction of diabetes, but was reduced by 32% after 20 weeks of the disease. Glycerol incorporation occurred primarily into phosphatidylcholine and triacylglycerol and was depressed up to 45% into major phosphoglycerides in nerves from both 2- and 20-week diabetic animals. Triacylglycerol labeling was also substantially decreased, and the reduction was comparable in intact and epineurium free nerve, suggesting that a metabolically active pool of this compound, which is sensitive to hyperglycemia and/or insulin deficiency, is located in or immediately adjacent to the nerve fibers. The considerable decline in incorporation of these lipid precursors in diabetic nerve may be related to impaired inositol transport and to decrease overall energy utilization by the tissue.  相似文献   

19.
The development of the specific binding sites for L-[3H]glutamic acid (KD = 370 nM) and for [3H]kainic acid (KD = 39 nM) was studied in the rat cerebellum. Specific binding at both sites remains low during the first week after birth but increases markedly during the second and third weeks after birth, when glutamatergic parallel fiber synaptogenesis occurs. The development of the kainate site lags behind that of the glutamate site, indicating their autonomy.  相似文献   

20.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号