首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Okamoto H  Ichikawa K 《Bio Systems》2000,55(1-3):65-71
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) undergoes Ca(2+)/calmodulin-dependent autophosphorylation of threonine-286/287 (Thr(286/287)). Extremely high concentration of CaMKII in the postsynaptic spine indicates that increase in the Ca(2+) concentration in the spine induced by synaptic activation results in Thr(286/287) autophosphorylation of this enzyme. It has recently been shown that the K(d) value of CaMKII for Ca(2+)/calmodulin (Ca(2+)/CaM) drastically decreases after Thr(286/287) autophosphorylation. Therefore, Ca(2+)/CaM associated with CaMKII becomes tightly bound to this kinase after Thr(286/287) autophosphorylation. This has been called 'Ca(2+)/CaM trapping'. We discussed the functional significance of Ca(2+)/CaM trapping in the neuronal system by a mathematical-modelling approach. We considered neighbouring synapses formed on the same dendrite and different increase in the Ca(2+) concentration in each spine. CaMKII undergoing Thr(286/287) autophosphorylation in each spine is eager to recruit nearby calmodulin in the dendrite for Ca(2+)/CaM trapping. Since the amount of calmodulin is limited, recruiting calmodulin to each spine causes competition among synapses for this finite resource. The results of our computer simulation show that this competition leads to 'winner-take-all': almost all calmodulin is taken by a few synapses to which relatively large increases in the Ca(2+) concentration are assigned. These results suggest a novel form of synaptic encoding of information.  相似文献   

2.
Ca(2+)/calmodulin dependent protein kinase (CaMPK) II is a key enzyme in many physiological processes. The enzyme is inactive unless Ca(2+)/CaM binds to it. In this inactive form CaMPK-II does not bind ATP suggesting that the ATP-binding domain is involved in an intramolecular interaction. We show here that F12, a 12 amino acid long peptide fragment of the ATP-binding domain (CaMPK-II(23-34), GAFSVVRRCVKV) can inhibit the Ca(2+)/CaM-dependent activity (IC(50) of 3 microM) but has no effect on the Ca(2+)/CaM-independent activity of CaMPK-II. Kinetic analysis exhibited mixed inhibition with respect to autocamtide-2 and ATP. The inhibition by F12 showed specificity towards CaMPK-II, but also inhibited CaMPK-I (IC(50) = 12.5 microM), while CaMPK-IV (IC(50) = 85 microM) was inhibited poorly and cAMP-dependent protein kinase (PKA) was not inhibited. Substitution of phenylalanine at position 25 to alanine (A12), had little effect on the inhibition of different Ca(2+)/CaM-dependent protein kinases, suggesting that phenylalanine 25 does not play a crucial role in the interactions involving F12. Thus the molecular interactions involving the ATP-binding domain appears to play a role in the regulation of nonphosphorylated CaMPK-II activity.  相似文献   

3.
Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) phosphorylate and activate specific downstream protein kinases, including CaMKI, CaMKIV, and 5'-AMP-activated protein kinase, which mediates a variety of Ca(2+) signaling cascades. CaMKKs have been shown to undergo autophosphorylation, although their role in enzymatic regulation remains unclear. Here, we found that CaMKKα and β isoforms expressed in nonstimulated transfected COS-7 cells, as well as recombinant CaMKKs expressed in and purified from Escherichia coli, were phosphorylated at Thr residues. Introduction of a kinase-dead mutation completely impaired the Thr phosphorylation of these recombinant CaMKK isoforms. In addition, wild-type recombinant CaMKKs were unable to transphosphorylate the kinase-dead mutants, suggesting that CaMKK isoforms undergo Ca(2+)/CaM-independent autophosphorylation in an intramolecular manner. Liquid chromatography-tandem mass spectrometry analysis identified Thr(482) in the autoinhibitory domain as one of the autophosphorylation sites in CaMKKβ, but phosphorylation of the equivalent Thr residue (Thr(446)) in the α isoform was not observed. Unlike CaMKKα that has high Ca(2+)/CaM-dependent activity, wild-type CaMKKβ displays enhanced autonomous activity (Ca(2+)/CaM-independent activity, 71% of total activity). This activity was significantly reduced (to 37%) by substitution of Thr(482) with a nonphosphorylatable Ala, without significant changes in Ca(2+)/CaM binding. In addition, a CaMKKα mutant containing the CaMKKβ regulatory domain was shown to be partially phosphorylated at Thr(446), resulting in a modest elevation of its autonomous activity. The combined results indicate that, in contrast to the α isoform, CaMKKβ exhibited increased autonomous activity, which was caused, at least in part, by autophosphorylation at Thr(482), resulting in partial disruption of the autoinhibitory mechanism.  相似文献   

4.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.  相似文献   

5.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   

6.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

7.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

8.
Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.  相似文献   

9.
10.
The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.  相似文献   

11.
Chin D  Means AR 《Biochemistry》2002,41(47):14001-14009
A mechanism that relates calmodulin (CaM) binding to enzyme activation remains to be established within the context of full-length calmodulin kinase IIalpha (CaM KIIalpha). Previous studies using peptides and/or truncated enzymes have shown that L299 of CaM KIIalpha represents an "anchor" for Ca(2+)/CaM binding and that F293 is required for autoinhibition. We have substituted each of these residues with a W in full-length CaM KIIalpha and measured the W fluorescence to evaluate the location of these side chains in the absence and presence of Ca(2+)/CaM. Fluorescence emission of the L299W mutant indicates that L299 is solvent accessible in the absence of Ca(2+)/CaM but becomes internalized in the presence of Ca(2+)/CaM. On the other hand, examination of F293W indicates that Ca(2+)/CaM binding promotes enzyme activation by transferring F293 from an internal location in the inactive enzyme to a more solvent accessible position in the active enzyme. In addition, F293 interacts with Ca(2+)/CaM as a consequence of autophosphorylation at T286, thus providing a mechanism for CaM trapping. Whereas in the absence of autophosphorylation the exposure of F293 is reversed by dissociation of CaM leading to enzyme autoinhibition, after autophosphorylation of T286, F293 is retained in an exposed position due to dissociation of CaM, consistent with the retention of autonomous activity. Proline mutants were introduced at positions between T286 and F293 to explore the basis of CaM-independent, autonomous activity. The observation that an L290P mutant displayed a high level of activity independent of Ca(2+)/CaM or phosphorylation of T286 indicates that a change in the conformation of the polypeptide main chain at L290 might contribute to the mechanism for generating autophosphorylation-dependent autonomous activity.  相似文献   

12.
Neuronal Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) interacts with several prominent dendritic spine proteins, which have been termed CaMKII-associated proteins. The NR2B subunit of N-methyl-d-aspartate (NMDA)-type glutamate receptor, densin-180, and alpha-actinin bind comparable, approximately stoichiometric amounts of Thr(286)-autophosphorylated CaMKIIalpha, forming a ternary complex (Robison, A. J., Bass, M. A., Jiao, Y., Macmillan, L. B., Carmody, L. C., Bartlett, R. K., and Colbran, R. J. (2005) J. Biol. Chem. 280, 35329-35336), but their impacts on CaMKII function are poorly understood. Here we show that these interactions are differentially regulated and exert distinct effects on CaMKII activity. Nonphosphorylated and Thr(286)-autophosphorylated CaMKII bind to alpha-actinin with similar efficacy, but autophosphorylation at Thr(305/306) or Ca(2+)/calmodulin binding significantly reduce this binding. Moreover, alpha-actinin antagonizes CaMKII activation by Ca(2+)/calmodulin, as assessed by autophosphorylation and phosphorylation of a peptide substrate. CaMKII binding to densin (1247-1542) is partially independent of Thr(286) autophosphorylation and is unaffected by Ca(2+)-independent autophosphorylation or Ca(2+)/calmodulin. In addition, the CaMKII binding domain of densin-180 has little effect on CaMKII activity. In contrast, the interaction of CaMKIIalpha with NR2B requires either Thr(286) autophosphorylation or the binding of both Ca(2+)/calmodulin and adenine nucleotides. NR2B inhibits both the Ca(2+)/calmodulin-dependent and autonomous activities of CaMKII by a mechanism that is competitive with autocamtide-2 substrate, non-competitive with syntide-2 substrate, and uncompetitive with respect to ATP. In combination, these data suggest that dynamically regulated interactions with CaMKII-associated proteins could play pleiotropic roles in finetuning CaMKII signaling in defined subcellular compartments.  相似文献   

13.
Ca(2+) oscillations are required in various signal trans duction pathways, and contain information both in their amplitude and frequency. Remarkably, the Ca(2+)/calmodulin(CaM)-dependent protein kinase II (CaMKII) can decode such frequencies. A Ca(2+)/CaM-stimulated autophosphorylation leads to Ca(2+)/CaM-independent (autonomous) activity of the kinase that outlasts the initial stimulation. This autonomous activity increases exponentially with the frequency of Ca(2+) oscillations. Here we show that three beta-CaMKII splice variants (beta(M), beta and beta(e)') have very similar specific activity and maximal autonomy. However, their autonomy generated by Ca(2+) oscillations differs significantly. A mechanistic basis was found in alterations of the CaM activation constant and of the initial rate of autophosphorylation. Structurally, the splice variants differ only in a variable 'linker' region between the kinase and association domains. Therefore, we propose that differences in relative positioning of kinase domains within multimeric holoenzymes are responsible for the observed effects. Notably, the beta-CaMKII splice variants are differentially expressed, even among individual hippocampal neurons. Taken together, our results suggest that alternative splicing provides cells with a mechanism to modulate their sensitivity to Ca(2+) oscillations.  相似文献   

14.
The neuronal and endothelial nitric-oxide synthases (nNOS and eNOS) differ from inducible NOS in their dependence on the intracellular Ca(2+) concentration. Both nNOS and eNOS are activated by the reversible binding of calmodulin (CaM) in the presence of Ca(2+), whereas inducible NOS binds CaM irreversibly. One major divergence in the close sequence similarity between the NOS isoforms is a 40-50-amino acid insert in the middle of the FMN-binding domains of nNOS and eNOS. It has previously been proposed that this insert forms an autoinhibitory domain designed to destabilize CaM binding and increase its Ca(2+) dependence. To examine the importance of the insert we constructed two deletion mutants designed to remove the bulk of it from nNOS. Both mutants (Delta40 and Delta42) retained maximal NO synthesis activity at lower concentrations of free Ca(2+) than the wild type enzyme. They were also found to retain 30% of their activity in the absence of Ca(2+)/CaM, indicating that the insert plays an important role in disabling the enzyme when the physiological Ca(2+) concentration is low. Reduction of nNOS heme by NADPH under rigorous anaerobic conditions was found to occur in the wild type enzyme only in the presence of Ca(2+)/CaM. However, reduction of heme in the Delta40 mutant occurred spontaneously on addition of NADPH in the absence of Ca(2+)/CaM. This suggests that the insert regulates activity by inhibiting electron transfer from FMN to heme in the absence of Ca(2+)/CaM and by destabilizing CaM binding at low Ca(2+) concentrations, consistent with its role as an autoinhibitory domain.  相似文献   

15.
Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of cellular Ca(2+) signaling. Several inhibitors are commonly used to study CaMKII function, but these inhibitors all lack specificity. CaM-KIIN is a natural, specific CaMKII inhibitor protein. CN21 (derived from CaM-KIIN amino acids 43-63) showed full specificity and potency of CaMKII inhibition. CNs completely blocked Ca(2+)-stimulated and autonomous substrate phosphorylation by CaMKII and autophosphorylation at T305. However, T286 autophosphorylation (the autophosphorylation generating autonomous activity) was only mildly affected. Two mechanisms can explain this unusual differential inhibitor effect. First, CNs inhibited activity by interacting with the CaMKII T-site (and thereby also interfered with NMDA-type glutamate receptor binding to the T-site). Because of this, the CaMKII region surrounding T286 competed with CNs for T-site interaction, whereas other substrates did not. Second, the intersubunit T286 autophosphorylation requires CaM binding both to the "kinase" and the "substrate" subunit. CNs dramatically decreased CaM dissociation, thus facilitating the ability of CaM to make T286 accessible for phosphorylation. Tat-fusion made CN21 cell penetrating, as demonstrated by a strong inhibition of filopodia motility in neurons and insulin secrection from isolated Langerhans' islets. These results reveal the inhibitory mechanism of CaM-KIIN and establish a powerful new tool for dissecting CaMKII function.  相似文献   

16.
Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca(2+)/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca(2+)/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca(2+) chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca(2+)- and/or Ca(2+)/CaM-dependent EGFR regulators, pointing to a direct effect of Ca(2+)/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca(2+)/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region.  相似文献   

17.
Cyclic nucleotide-gated (CNG) ion channels mediate cellular responses to sensory stimuli. In vertebrate photoreceptors, CNG channels respond to the light-induced decrease in cGMP by closing an ion-conducting pore that is permeable to cations, including Ca(2+) ions. Rod CNG channels are directly inhibited by Ca(2+)-calmodulin (Ca(2+)/CaM), but the physiological role of this modulation is unknown. Native rod CNG channels comprise three CNGA1 subunits and one CNGB1 subunit. The single CNGB1 subunit confers several key properties on heteromeric channels, including Ca(2+)/CaM-dependent modulation. The molecular basis for Ca(2+)/CaM inhibition of rod CNG channels has been proposed to involve the binding of Ca(2+)/CaM to a site in the NH(2)-terminal region of the CNGB1 subunit, which disrupts an interaction between the NH(2)-terminal region of CNGB1 and the COOH-terminal region of CNGA1. Here, we test this mechanism for Ca(2+)/CaM-dependent inhibition of CNGA1/CNGB1 channels by simultaneously monitoring protein interactions with fluorescence spectroscopy and channel function with patch-clamp recording. Our results show that Ca(2+)/CaM binds directly to CNG channels, and that binding is the rate-limiting step for channel inhibition. Further, we show that the NH(2)- and COOH-terminal regions of CNGB1 and CNGA1 subunits, respectively, are in close proximity, and that Ca(2+)/CaM binding causes a relative rearrangement or separation of these regions. This motion occurs with the same time course as channel inhibition, consistent with the notion that rearrangement of the NH(2)- and COOH-terminal regions underlies Ca(2+)/CaM-dependent inhibition.  相似文献   

18.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown. Using coimmunoprecipitation from head extracts and in vitro binding assays, we show that CaMKII and Eag form a stable complex and that association with Eag activates CaMKII independently of CaM and autophosphorylation. Ca(2+)/CaM is necessary to initiate binding of CaMKII to Eag but not to sustain association because binding persists when CaM is removed. The Eag CaMKII-binding domain has homology to the CaMKII autoregulatory region, and the constitutively active CaMKII mutant, T287D, binds Eag Ca(2+)-independently in vitro and in vivo. These results favor a model in which the CaMKII-binding domain of Eag displaces the CaMKII autoinhibitory region. Displacement results in autophosphorylation-independent activation of CaMKII which persists even when Ca(2+) levels have gone down. Activity-dependent binding to this potassium channel substrate allows CaMKII to remain locally active even when Ca(2+) levels have dropped, providing a novel mechanism by which CaMKII can regulate excitability locally over long time scales.  相似文献   

19.
Calcineurin (CN) is a Ca(2+)/calmodulin (CaM)-dependent protein serine/threonine phosphatase that contains Zn(2+) in its catalytic domain and can be stimulated by divalent ions such as Mn(2+) and Ni(2+). In this study, the role of exogenous Zn(2+) in the regulation of CN activity and its relevance to the role of Ni(2+) was investigated. Zn(2+) at a concentration range of 10nM-10 micro M inhibited Ni(2+)-stimulated CN-activity in vitro in a dose-dependent manner and approximately 50% inhibition was attained with 0.25 micro M Zn(2+). Kinetic analysis showed that Zn(2+) inhibited the activity of CN by competing with Ni(2+). Interaction of CN and CaM was not inhibited with Zn(2+) at 10 micro M. Zn(2+) never affected the activity of cAMP phosphodiesterase 1 or myosin light-chain kinase (CaM-dependent enzymes) and rather activated alkaline phosphatase. The present results indicate that Zn(2+) should be a potent inhibitor for CN activity although this ion is essential for CN.  相似文献   

20.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号