首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Asparagine-requiring Jensen and Walker rat tumor cells and their asparagine-independent variants have been analyzed. The following results were obtained: (1) Both cell lines have very low levels of asparagine synthetase, and non-requiring revertants isolated from these lines have elevated levels of the enzyme. (2) No differences in chromosome number were detected between the parent Jensen line and five Jensen non-requiring revertants isolated from it. (3) Both Jensen and Walker cells undergo asparagineless death when deprived of this amino acid, although the Jensen cells do so at a more rapid rate. (4) Jensen requiring lines are at a selective advantage when grown in competition with non-requiring variants in complete medium, and their growth rate is more rapid when grown separately. The selective coefficients for the variant with respect to the asparagine-requiring parent ASN(-) line were 0.94 for the competition experiments and 0.83 for growth rate estimates. (5) A somatic cell hybrid between Chinese hamster cells (which require asparagine at low densities, and posses measurable synthetase activity) and the Walker line was found to be asparagine-independent, and it possessed enzyme levels equivalent to the hamster parent. The results of these investigations suggest a parallel with microbial auxotrophic mutants and can be understood in terms of alterations within nuclear structural genes.  相似文献   

2.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

3.
Asparagine synthetase cDNAs containing the complete coding region were isolated from a human fibroblast cDNA library. DNA sequence analysis of the clones showed that the message contained one open reading frame encoding a protein of 64,400 Mr, 184 nucleotides of 5' untranslated region, and 120 nucleotides of 3' noncoding sequence. Plasmids containing the asparagine synthetase cDNAs were used in DNA-mediated transfer of genes into asparagine-requiring Jensen rat sarcoma cells. The cDNAs containing the entire protein-coding sequence expressed asparagine synthetase activity and were capable of conferring asparagine prototrophy on the Jensen rat sarcoma cells. However, cDNAs which lacked sequence for as few as 20 amino acids at the amino terminal could not rescue the cells from auxotrophy. The transferant cell lines contained multiple copies of the human asparagine synthetase cDNAs and produced human asparagine synthetase mRNA and asparagine synthetase protein. Several transferants with numerous copies of the cDNAs exhibited only basal levels of enzyme activity. Treatment of these transferant cell lines with 5-azacytidine greatly increased the expression of asparagine synthetase mRNA, protein, and activity.  相似文献   

4.
In Chinese hamster ovary cells, the gene for asparagine synthetase, which spans 20 kilobase pairs, was found to contain a cluster of potential sites for CpG methylation in a 1-kilobase-pair region surrounding the first exon. Fourteen of the sites that could be assayed for methylation by MspI-HpaII digestions were found in this region, with an additional nine MspI sites spread throughout the remainder of the gene. The methylation status of the gene was analyzed in a series of cell lines that differed in the amount of asparagine synthetase activity. The level of expression showed a direct correlation with the extent of methylation of a subset of the MspI sites found in the 5' region of the gene. The rest of the gene was completely methylated in most cell lines. Wild-type cells, which expressed a basal level of asparagine synthetase activity, were partially demethylated in the 5' region. In contrast, asparagine-requiring N3 cells, which lacked detectable mRNA for asparagine synthetase, were methylated throughout the entire gene. Spontaneous revertants of strain N3, selected for growth in asparagine-free medium, exhibited extensive hypomethylation of the asparagine synthetase gene. The methylation pattern of the gene in cell lines that overproduced the enzyme was also examined. Albizziin-resistant cell lines, which had amplified copies of the gene, were extensively demethylated in the 5' region. Overexpression of asparagine synthetase in beta-aspartyl hydroxamate-resistant lines without amplified copies of the gene was also correlated with DNA hypomethylation.  相似文献   

5.
Nine asparagine-requiring mutants were isolated in culture from the Don line of Chinese hamster cells. Investigation of the asparagine requirements of the mutants, the effect of asparagine deprivation on macromolecular synthesis, and the rates of reversion to asparagine independence indicated that there were differences between the mutant clones. Biochemical analysis revealed that the defect in the mutants was due to a deficiency of the enzyme asparagine synthetase, and that the enzyme activity in the mutants and Asn+ revertants obtained from them was not influenced by the concentration of asparagine in the growth medium. Complementation analysis by Sendai virusmediated cell fusion indicated that the lesion behaved as a recessive trait, and was probably located in the same gene in all the mutant clones.  相似文献   

6.
We isolated pleiotropic mutants of Klebsiella aerogenes with the transposon Tn5 which were unable to utilize a variety of poor sources of nitrogen. The mutation responsible was shown to be in the asnB gene, one of two genes coding for an asparagine synthetase. Mutations in both asnA and asnB were necessary to produce an asparagine requirement. Assays which could distinguish the two asparagine synthetase activities were developed in strains missing a high-affinity asparaginase. The asnA and asnB genes coded for ammonia-dependent and glutamine-dependent asparagine synthetases, respectively. Asparagine repressed both enzymes. When growth was nitrogen limited, the level of the ammonia-dependent enzyme was low and that of the glutamine-dependent enzyme was high. The reverse was true in a nitrogen-rich (ammonia-containing) medium. Furthermore, mutations in the glnG protein, a regulatory component of the nitrogen assimilatory system, increased the level of the ammonia-dependent enzyme. The glutamine-dependent asparagine synthetase was purified to 95%. It was a tetramer with four equal 57,000-dalton subunits and catalyzed the stoichiometric generation of asparagine, AMP, and inorganic pyrophosphate from aspartate, ATP, and glutamine. High levels of ammonium chloride (50 mM) could replace glutamine. The purified enzyme exhibited a substrate-independent glutaminase activity which was probably an artifact of purification. The tetramer could be dissociated; the monomer possessed the high ammonia-dependent activity and the glutaminase activity, but not the glutamine-dependent activity. In contrast, the purified ammonia-dependent asparagine synthetase, about 40% pure, had a molecular weight of 80,000 and is probably a dimer of identical subunits. Asparagine inhibited both enzymes. Kinetic constants and the effect of pH, substrate, and product analogs were determined. The regulation and biochemistry of the asparagine synthetases prove the hypothesis strongly suggested by the genetic and physiological evidence that a glutamine-dependent enzyme is essential for asparagine synthesis when the nitrogen source is growth rate limiting.  相似文献   

7.
Neurospora crassa mutants deficient in asparagine synthetase   总被引:1,自引:0,他引:1  
Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase.  相似文献   

8.
The Chinese hamster ovary cell line CHO-tsH1 is a temperature-sensitive leucyl-tRNA synthetase mutant that shows temperature-dependent regulation of the amino acid transport responsible for accumulating leucine, System L. At nonpermissive temperatures, CHO-tsH1 cells are unable to grow because they are unable to incorporate leucine into protein. As a result, System L activity is increased. We have isolated mutants from CHO-tsH1 that have constitutively de-repressed System L activity. These mutants are temperature-resistant as a result of increased intracellular steady-state accumulations of System L-related amino acids, which compensates for the defective synthetase activity. In this study, we have subjected one of these regulatory mutant cell lines (C11B6) to a tritium-suicide selection, in which L-[3H]leucine was used as a toxic substrate. Three mutant cell lines, C4B4, C5D9, and C9D9 that showed reduced System L transport activity were isolated. The decreases in the initial rates of System L transport activity lead to reduced steady-state accumulations of System L-related amino acids. In contrast to the parental cell line, C11B6, the transport-defective mutants are temperature-sensitive because the reduced intracellular pool of leucine can no longer compensate for the defective synthetase activity.  相似文献   

9.
A total of 20Bacillus subtilis F29-3 mutants defective in fengycin biosynthesis was obtained by Tn917 mutagenesis. Cloning and mapping results showed that the transposon in these mutants was inserted in eleven different locations on the chromosome. We were able to use the chromosomal sequence adjacent to the transposon as a probe to screen for cosmid clones containing the fengycin biosynthesis genes. One of the clones obtained, pFC660, was 46 kb long. Eight transposon insertion sites were mapped within this plasmid. Among the eleven different mutants analyzed, four mutants had Tn917 inserted in regions which encoded peptide sequences similar to part of gramicidin S synthetase, surfactin synthetase, and tyrocidine synthetase. Our results suggest that fengycin is synthesized nonribosomally by the multienzyme thiotemplate mechanism.  相似文献   

10.
A total of 20Bacillus subtilis F29-3 mutants defective in fengycin biosynthesis was obtained by Tn917 mutagenesis. Cloning and mapping results showed that the transposon in these mutants was inserted in eleven different locations on the chromosome. We were able to use the chromosomal sequence adjacent to the transposon as a probe to screen for cosmid clones containing the fengycin biosynthesis genes. One of the clones obtained, pFC660, was 46 kb long. Eight transposon insertion sites were mapped within this plasmid. Among the eleven different mutants analyzed, four mutants had Tn917 inserted in regions which encoded peptide sequences similar to part of gramicidin S synthetase, surfactin synthetase, and tyrocidine synthetase. Our results suggest that fengycin is synthesized nonribosomally by the multienzyme thiotemplate mechanism.  相似文献   

11.
L H Thompson  D J Lofgren  G M Adair 《Cell》1977,11(1):157-168
A number of conditional lethal mutants of CHO cells that are defective in protein synthesis have been characterized with respect to their biochemical lesions. A defective aminoacyl-tRNA synthetase appears to be the basis of each mutant phenotype. In each strain, the specific activity in vitro of the synthetase cognate for one of the following amino acids was substantially reduced: arginine, asparagine, glutamine, histidine or methionine. One mutant, Arg-1, gave no detectable arginyl-tRNA synthetase activity, suggesting that it contains an altered enzyme that is unstable in vitro. Most of the mutants correspondingly exhibited impaired aminoacylation in vivo under nonpermissive conditions. However, two mutants, Arg-1 and His-1, appeared to have normal levels of acylated tRNA under the nonpermissive conditions which inhibited protein synthesis to approximately 50% and 10%, respectively. The expression of each mutant's phenotype, measured by rates of protein synthesis or growth, was a function of temperature and/or the concentration of amino acid cognate for the synthetase found to be deficient in vitro. The properties of these mutants make them applicable to diverse problems related to translation in mammalian cells.  相似文献   

12.
A total of 351 auxotrophic mutants with different antibiotic activity, including several mutants with activity higher than that of the parent prototrophic strains were obtained under the effect of gamma-rays from 3 prototrophic strains of Act. coeruleorubidus. It was shown that most of the auxotrophic mutants did not preserve the property of biochemical insufficiency on passages on complete media. A mutant strain 1059-32 with activity 2 times higher than that of the prototrophic strain 2-39 and the parent auxotrophic culture was obtained from the revertants. Requirements in 29 growth factors including 17 amino acids, 4 nitrous bases, 8 vitamins and coenzymes were determined in 46 stable auxotrophic mutants isolated. The effect of the specific and non-specific growth factors on the culture antibiotic production was studied.  相似文献   

13.
Asparagine synthetase catalyses the transfer of an amino group from glutamine to aspartate to form glutamate and asparagine. The accumulation of free (nonprotein) asparagine in crops has implications for food safety because free asparagine is the precursor for acrylamide, a carcinogenic contaminant that forms during high‐temperature cooking and processing. Here we review publicly available genome data for asparagine synthetase genes from species of the Pooideae subfamily, including bread wheat and related wheat species (Triticum and Aegilops spp.), barley (Hordeum vulgare) and rye (Secale cereale) of the Triticeae tribe. Also from the Pooideae subfamily: brachypodium (Brachypodium dIstachyon) of the Brachypodiae tribe. More diverse species are also included, comprising sorghum (Sorghum bicolor) and maize (Zea mays) of the Panicoideae subfamily and rice (Oryza sativa) of the Ehrhartoideae subfamily. The asparagine synthetase gene families of the Triticeae species each comprise five genes per genome, with the genes assigned to four groups: 1, 2, 3 (subdivided into 3.1 and 3.2) and 4. Each species has a single gene per genome in each group, except that some bread wheat varieties (genomes AABBDD) and emmer wheat (Triticum dicoccoides; genomes AABB) lack a group 2 gene in the B genome. This raises questions about the ancestry of cultivated pasta wheat and the B genome donor of bread wheat, suggesting that the hybridisation event that gave rise to hexaploid bread wheat occurred more than once. In phylogenetic analyses, genes from the other species cluster with the Triticeae genes, but brachypodium, sorghum and maize lack a group 2 gene, while rice has only two genes, one group 3 and one group 4. This means that TaASN2, the most highly expressed asparagine synthetase gene in wheat grain, has no equivalent in maize, rice, sorghum or brachypodium. An evolutionary pathway is proposed in which a series of gene duplications gave rise to the five genes found in modern Triticeae species.  相似文献   

14.
Tagged mutants affected in the degradation of hydrophobic compounds (HC) were generated by insertion of a zeta-URA3 mutagenesis cassette (MTC) into the genome of a zeta-free and ura3 deletion-containing strain of Yarrowia lipolytica. MTC integration occurred predominantly at random by nonhomologous recombination. A total of 8,600 Ura(+) transformants were tested by replica plating for (i) growth on minimal media with alkanes of different chain lengths (decane, dodecane, and hexadecane), oleic acid, tributyrin, or ethanol as the C source and (ii) colonial defects on different glucose-containing media (YPD, YNBD, and YNBcas). A total of 257 mutants were obtained, of which about 70 were affected in HC degradation, representing different types of non-alkane-utilizing (Alk(-)) mutants (phenotypic classes alkA to alkE) and tributyrin degradation mutants. Among Alk(-) mutants, growth defects depending on the alkane chain length were observed (alkAa to alkAc). Furthermore, mutants defective in yeast-hypha transition and ethanol utilization and selected auxotrophic mutants were isolated. Flanking borders of the integrated MTC were sequenced to identify the disrupted genes. Sequence analysis indicated that the MTC was integrated in the LEU1 locus in N083, a leucine-auxotrophic mutant, in the isocitrate dehydrogenase gene of N156 (alkE leaky), in the thioredoxin reductase gene in N040 (alkAc), and in a peroxine gene (PEX14) in N078 (alkD). This indicates that MTC integration is a powerful tool for generating and analyzing tagged mutants in Y. lipolytica.  相似文献   

15.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

16.
Thymidylate synthetase activity was measured in crude extracts of the yeast Saccharomyces cerevisiae by a sensitive radiochemical assay. Spontaneous non-conditional mutants auxotrophic for thymidine 5'-monophosphate (tmp1) lacked detectable thymidylate synthetase activity in cell-free extracts. In contrast, the parent strains (tup1, -2, or -4), which were permeable to thymidine 5'-monophosphate, contained levels of activity similar to those found in wild-type cells. Specific activity of thymidylate synthetase in crude extracts of normal cells or of cells carrying tup mutations was essentially unaffected by the ploidy or mating type of the cells, by the medium used for growth, by the respiratory capacity of the cells, by concentrations of exogenous thymidine 5'-monophosphate as high as 50 mug/ml, or by subsequent removal of thymidine 5'-monophosphate from the medium. Extracts of a strain bearing the temperature-sensitive cell division cycle mutation cdc21 lacked detectable thymidylate synthetase activity under all conditions tested. Its parent and another mutant (cdc8), which arrests with the same terminal phenotype under restrictive conditions, had normal levels of the enzyme. Cells of a temperature-sensitive thymidine 5'-monophosphate auxotroph arrested with a morphology identical to the cdc21 strain at the nonpermissive temperature and contained demonstrably thermolabile thymidylate synthetase activity. Tetrad analysis and the properties of revertants showed that the thymidylate synthetase defects were a consequence of the same mutation causing, in the auxotrophs, a requirement for thymidine 5'-monophosphate and, in the conditional mutants, temperature sensitivity. Complementation tests indicated that tmp1 and cdc21 are the same locus. These results identify tmp1 as the structural gene for yeast thymidylate synthetase.  相似文献   

17.
Thirteen stable hybridoma cell lines producing monoclonal antibodies specific for asparagine synthetase were established and one monoclonal antibody was chosen to produce an immunoaffinity resin for the purification of asparagine synthetase. Bovine pancreatic asparagine synthetase was purified to a specific activity of 395 nmol of Asn produced/min/mg. Electrophoresis of the affinity-purified enzyme in sodium dodecyl sulfate polyacrylamide gels resulted in a single Mr = 54,000 polypeptide. Prior cross-linking with dimethyl suberimidate resulted in a band at Mr = 52,500 (monomer) and two additional bands at Mr = 97,000 and 98,000 (dimers), suggesting the possibility of a heterogeneous enzyme population with slight differences in subunit composition. The ratio of Gln-dependent and NH3-dependent asparagine synthetase activities was constant for immunoaffinity-purified enzyme, but the ratios of glutaminase activity to synthetase activities varied, suggesting separate aspartate and glutamine binding sites. The monoclonal antibodies were tested as inhibitors of the Gln-dependent and NH3-dependent asparagine synthetase activities as well as for inhibition of the glutaminase activity of the enzyme. Two antibodies inhibited Gln- and NH3-dependent synthesis of asparagine, but did not affect the glutaminase activity of immunoaffinity-purified asparagine synthetase. A third monoclonal antibody inhibited Gln-dependent synthesis of asparagine and glutaminase activity, but activated NH3-dependent asparagine synthetase activity. These data are discussed in terms of multiple substrate binding domains within the asparagine synthetase molecule.  相似文献   

18.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

19.
Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号