首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.  相似文献   

2.
3.
The heat shock response is a universal phenomenon and is among the most highly conserved cellular responses. However, BC-8, a rat histiocytoma, fails to mount a heat shock response unlike all other eukaryotic cells. In the absence of induction of heat shock proteins, apoptotic cell death is activated in BC-8 tumor cells upon heat shock. We demonstrate here that stable transformants of BC-8 tumor cells transfected with hsp70 cDNA constitutively express hsp70 protein and are transiently protected from heat induced apoptosis for 6-8 h. In addition heat stress induces CD95 gene expression in these tumor cells. There is a delay in CD95 expression in hsp70 transfected cells suggesting a correlation between the cell surface expression of CD95 and the time of induction of apoptosis in this tumor cell line. Also expression of CD95 antigen appears to inhibit the interaction between heat shock factors and heat shock elements in these cells resulting in the lack of heat shock response.  相似文献   

4.
Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer’s-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain “rejuvenating” effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level.  相似文献   

5.
The stress-inducible heat shock protein (HSP) 70 is known to function as an endogenous danger signal that can increase the immunogenicity of tumors and induce CTL responses. We show in this study that HSP70 also activates mouse NK cells that recognize stress-inducible NKG2D ligands on tumor cells. Tumor size and the rate of metastases derived from HSP70-overexpressing human melanoma cells were found to be reduced in T and B cell-deficient SCID mice, but not in SCID/beige mice that lack additionally functional NK cells. In the SCID mice with HSP70-overexpressing tumors, NK cells were activated so that they killed ex vivo tumor cells that expressed NKG2D ligands. In the tumors, the MHC class I chain-related (MIC) A and B molecules were found to be expressed. Interestingly, a counter selection was observed against the expression of MICA/B in HSP70-overexpressing tumors compared with control tumors in SCID, but not in SCID/beige mice, suggesting a functional relevance of MICA/B expression. The melanoma cells were found to release exosomes. HSP70-positive exosomes from the HSP70-overexpressing cells, in contrast to HSP70-negative exosomes from the control cells, were able to activate mouse NK cells in vitro to kill YAC-1 cells, which express NKG2D ligands constitutively, or the human melanoma cells, in which MICA/B expression was induced. Thus, HSP70 and inducible NKG2D ligands synergistically promote the activation of mouse NK cells resulting in a reduced tumor growth and suppression of metastatic disease.  相似文献   

6.
7.
Several studies have confirmed that certain stress proteins can function as potent vaccines against a specific cancer when purified from the same tumor. Recent studies of two long-recognized but unstudied stress proteins, heat shock protein (hsp) 110 and glucose-regulated protein (grp) 170, have shown them to be efficient peptide chain-binding proteins. The present investigation examines the vaccine potential of hsp110 and grp170. First, it is shown that prior vaccination with hsp110 or grp170 purified from methylcholanthrene-induced fibrosarcoma caused complete regression of the tumor. In a second tumor model, hsp110 or grp170 purified from Colon 26 tumors led to a significant growth inhibition of this tumor. In addition, hsp110 or grp170 immunization significantly extended the life span of Colon 26 tumor-bearing mice when applied after tumor transplantation. A tumor-specific cytotoxic T lymphocyte response developed in the mice immunized with tumor-derived hsp110 or grp170. Furthermore, treatments of the mice with bone marrow-derived dendritic cells pulsed with these two proteins from tumor also elicited a strong antitumor response. Last, we showed that mild, fever-like hyperthermic conditions enhance the vaccine efficiency of hsp110 as well as heat shock cognate 70, but not grp170. These studies indicate that hsp110 and grp170 can be used in hsp-based cancer immunotherapy, that Ag-presenting dendritic cells can be used to mediate this therapeutic approach, and that fever-level hyperthermia can significantly enhance the vaccine efficiency of hsps.  相似文献   

8.
A number of clinical conditions are known to result in the induction of heat shock proteins, but detailed studies on stress response have focused mostly on heat shock as a model. We have analyzed the induction and intracellular distribution of heat shock proteins in a reversible adenosine triphosphate (ATP) depletion model of renal ischemia. Two Hsp70 homologues, Hsp70 in the cytoplasm and BiP in the endoplasmic reticulum (ER) lumen, were found significantly induced during the recovery phase of ATP depletion. Other members of the heat shock protein family, such as Hsp90, constitutive Hsc70, and a related protein Hop60, were not induced. The induction of stress proteins on ATP depletion differed from that after heat shock in the kinds of proteins elaborated, their induction kinetics, and their intracellular distributions. Biochemical fractionation and indirect immunofluorescence experiments indicated that Hsp70 was predominantly cytoplasmic in the recovery phase of ischemia-like stress. Velocity sedimentation on sucrose gradients showed that induced Hsp70 sedimented as small, soluble complexes, ranging in size from 4S20,w to 8S20,w. The results suggest a role for induced Hsp70 that may be different from one of protecting aggregated proteins as under heat shock and emphasize the need for their characterization in other clinical conditions that result in stress response.  相似文献   

9.
We have utilized a free-solution-isoelectric focusing technique (FS-IEF) to obtain chaperone-rich cell lysates (CRCL) fractions from clarified tumor homogenates. The FS-IEF technique for enriching multiple chaperones from tumor lysate is relatively easy and rapid, yielding sufficient immunogenic material for clinical use. We have shown that tumor-derived CRCL carry antigenic peptides. Dendritic cells (DCs) uptake CRCL and cross-present the chaperoned peptides to T cells. Tumor-derived CRCL induce protective immune responses against a diverse range of murine tumor types in different genetic backgrounds. When compared to purified heat shock protein 70 (HSP70), single antigenic peptide or unfractionated lysate, CRCL have superior ability to activate/mature DCs and are able to induce potent, long lasting and tumor specific T-cell-mediated immunity. While CRCL vaccines were effective as stand-alone therapies, the enhanced immunogenicity arising from CRCL-pulsed DC as a vaccine indicates that CRCL could be the antigen source of choice for DC-based anti-cancer immunotherapies. The nature of CRCL's enhanced immunogenicity may lie in the broader antigenic peptide repertoire as well as the superior immune activation capacity of CRCL. Exongenous CRCL also supply danger signals in the context of apoptotic tumor cells and enhance the immunogenicity of apoptotic tumor cells, leading to tumor-specific T cell dependent long-term immunity. Moreover, CRCL based vaccines can be effectively combined with chemotherapy to treat cancer. Our findings indicate that CRCL have prominent adjuvant effects and are effective sources of tumor antigens for pulsing DCs. Tumor-derived CRCL are promising anti-cancer vaccines that warrant clinical research and development.  相似文献   

10.
11.
Heat shock proteins (HSPs) are thought to play a role in the development of cancer and to modulate tumor response to cytotoxic therapy. In this study, we have examined the expression of hsf and HSP genes in normal human prostate epithelial cells and a range of prostate carcinoma cell lines derived from human tumors. We have observed elevated expressions of HSF1, HSP60, and HSP70 in the aggressively malignant cell lines PC-3, DU-145, and CA-HPV-10. Elevated HSP expression in cancer cell lines appeared to be regulated at the post-messenger ribonucleic acid (mRNA) levels, as indicated by gene chip microarray studies, which indicated little difference in heat shock factor (HSF) or HSP mRNA expression between the normal and malignant prostate cell lines. When we compared the expression patterns of constitutive HSP genes between PC-3 prostate carcinoma cells growing as monolayers in vitro and as tumor xenografts growing in nude mice in vivo, we found a marked reduction in expression of a wide spectrum of the HSPs in PC-3 tumors. This decreased HSP expression pattern in tumors may underlie the increased sensitivity to heat shock of PC-3 tumors. However, the induction by heat shock of HSP genes was not markedly altered by growth in the tumor microenvironment, and HSP40, HSP70, and HSP110 were expressed abundantly after stress in each growth condition. Our experiments indicate therefore that HSF and HSP levels are elevated in the more highly malignant prostate carcinoma cells and also show the dominant nature of the heat shock-induced gene expression, leading to abundant HSP induction in vitro or in vivo.  相似文献   

12.
Bortezomib, a proteasome inhibitor, is a chemotherapeutic drug that is commonly used to treat a variety of human cancers. The antitumor effects of bortezomib-induced tumor cell immunogenicity have not been fully delineated. In this study, we examined the generation of immune-mediated antitumor effects in response to treatment by bortezomib in a murine ovarian tumor model. We observed that tumor-bearing mice that were treated with bortezomib had CD8(+) T cell-mediated inhibition of tumor growth. Furthermore, the comparison of tumor cell-based vaccines that were produced from tumor cells treated or untreated with bortezomib showed vaccination with drug-treated tumor cell-based vaccines elicited potent tumor-specific CD8(+) T cell immune response with improved therapeutic antitumor effect in tumor-bearing mice. Conversely, the untreated tumor cell-based vaccines led to no appreciable antitumor response. Treatment of tumor cells with bortezomib led to the upregulation of Hsp60 and Hsp90 on the cell surface and promoted their phagocytosis by dendritic cells (DCs). However, cell surface expression of Hsp60, instead of Hsp90, is the more important determinant of whether bortezomib-treated tumor cells can generate tumor-specific CD8(+) T cells. CD11c(+) DCs that were treated with bortezomib in vitro had enhanced phagocytic activities. In addition, CD11c(+) DCs from bortezomib-treated tumor-bearing mice had increased maturation. At lower concentrations, bortezomib had no inhibitory effects on T cell proliferation. Taken together, our data indicate that bortezomib can render tumor cells immunogenic by upregulating the cell surface expression of heat shock protein 60 and heat shock protein 90, as well as improve DC function, which results in potent immune-mediated antitumor effects.  相似文献   

13.
Targeted disruption of hsp70.1 sensitizes to osmotic stress   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

14.
The relationship between the levels of 70 kDa family heat shock protein (Hsp) synthesis and lymphocyte sensitivity to stressors was investigated. Lymphocyte cultivation in mitogen deprived culture medium and/or the cell treatment with alkylating agents have been used as a stress challenge. Model experiments with two inbred murine strains genetically contrasting by the sensitivity to alkylating agents demonstrated that the basic level of Hsp synthesis depends on genotype. The quantity Hsp70 mRNA, as well as intracellular level of the proteins, in BALB/c was significantly higher than those in C57BL/6 mice. The mice, which were characterized by higher Hsp levels, demonstrated higher resistance to alkylating agent action. The induction of surplus amount of Hsp by heat shock increased the cell resistance to an alkylating agent melphalan. Lymphocyte isolated from high Hsp producers BALB/c mice were more resistant to apoptotic signals induced by mitogen deprivation.  相似文献   

15.
Heat shock proteins are recognized as significant participants in immune reactions. In this study, we have demonstrated that the cell surface presentation of MHC class I antigen was increased in tandem with increased heat shock protein 70 (HSP70) expression and the immunogenicity of rat T-9 glioma cells was enhanced by hyperthermia. T-9 cells showed growth inhibition for 24 h after the heat treatment at 43 degrees C for 1 h in vitro, but then resumed a normal growth rate. HSP70 expression reached a maximum at 24 h after heating. Flow cytometric analysis revealed a significant increase in MHC class I antigen on the surface of the heated cells. The augmentation of MHC class I surface expression started 24 h after heating and reached a maximum 48 h after heating. The expression of other immunologic mediators, such as intracellular adhesion molecule-1 (ICAM-1) and MHC class II antigens, did not increase. In an in vivo experiment using immunocompetent syngeneic rats (F344), growth of the heated T-9 cells, with augmentation of MHC class I antigen surface expression, was significantly inhibited, while the cells grew progressively in nude rats (F344/N Jcl-rnu). Furthermore, compared with lymphocytes from non-immunized (PBS only injection) rats or rats injected with non-heated T-9 cells, the splenic lymphocytes of the rats in which the heated T-9 cells were injected displayed specific cytotoxicity against T-9 cells. These results suggest that HSP70 is an important modulator of tumor cell immunogenicity, and that hyperthermic treatment of tumor cells can induce the host antitumor immunity via the expression of HSP70. These results may benefit further efforts on developing novel cancer immunotherapies based on hyperthermia.  相似文献   

16.
We have developed a molecular chaperone-based tumor vaccine that reverses the immune tolerance of cancer cells. Heat shock protein (HSP) 70 extracted from fusions of dendritic (DC) and tumor cells (HSP70.PC-F) possess superior properties such as stimulation of DC maturation and T cell proliferation over its counterpart from tumor cells. More importantly, immunization of mice with HSP70.PC-F resulted in a T cell-mediated immune response including significant increase of CD8 T cells and induction of the effector and memory T cells that was able to break T cell unresponsiveness to a nonmutated tumor Ag and provide protection of mice against challenge with tumor cells. By contrast, the immune response to vaccination with HSP70-PC derived from tumor cells is muted against such nonmutated tumor Ag. HSP70.PC-F complexes differed from those derived from tumor cells in a number of key manners, most notably, enhanced association with immunologic peptides. In addition, the molecular chaperone HSP90 was found to be associated with HSP70.PC-F as indicated by coimmunoprecipitation, suggesting ability to carry an increased repertoire of antigenic peptides by the two chaperones. Significantly, activation of DC by HSP70.PC-F was dependent on the presence of an intact MyD88 gene, suggesting a role for TLR signaling in DC activation and T cell stimulation. These experiments indicate that HSP70-peptide complexes (PC) derived from DC-tumor fusion cells have increased their immunogenicity and therefore constitute an improved formulation of chaperone protein-based tumor vaccine.  相似文献   

17.
18.
There are few factors more important to the mechanisms of evolution than stress. The stress response has formed as a result of natural selection, improving the capacity of organisms to withstand situations that require action. The ubiquity of the cellular stress response suggests that effective mechanisms to counteract stress emerged early in the history of life, and their commonality proves how vital such mechanisms are to operative evolution. The cellular stress response (CSR) has been identified as a characteristic of cells in all three domains of life and consists of a core 44 proteins that are structurally highly conserved and that have been termed the ‘minimal stress proteome’ (MSP). Within the MSP, the most intensely researched proteins are a family of heat‐shock proteins known as HSP70. Superficially, correlations between the induction of stress and HSP70 differential expression support the use of HSP70 expression as a nonspecific biomarker of stress. However, we argue that too often authors have failed to question exactly what HSP70 differential expression signifies. Herein, we argue that HSP70 up‐regulation in response to stressors has been shown to be far more complex than the commonly accepted quasi‐linear relationship. In addition, in many instances, the uncertain identity and function of heat‐shock proteins and heat‐shock cognates has led to difficulties in interpretation of reports of inducible heat‐shock proteins and constitutive heat‐shock cognates. We caution against the broad application of HSP70 as a biomarker of stress in isolation and conclude that the application of HSP70 as a meaningful index of stress requires a higher degree of validation than the majority of research currently undertakes.  相似文献   

19.
We studied how short-term preexposure of the thymus zone in male outbred NMRI mice to helium-neon laser light (632.8 nm, 0.2 mW/cm2) affects the activity of cells of the immune system under acute toxic stress. The stress was modeled by introducing a bacterial lipopolysaccharide that significantly enhanced the production of a number of cytokines in macrophages: interleukins 1α, 1β, 6, and 10, and tumor necrosis factor TNF-α. Single exposure of healthy mice to laser light did not cause any significant change in the production of cytokines and nitric oxide in cells but increased the production of the heat shock proteins HSP25, HSP70, and HSP90. Nonetheless, if mice were exposed to red light before inducing toxic stress, then the production of almost all the cytokines studied and nitric oxide was noticeably normalized. Moreover, the production of the heat shock proteins studied was also normalized. Thus, preexposure of a small region of the animal skin surface to laser light markedly decreased the toxic effect of lipopolysaccharide.  相似文献   

20.
Expression of heat shock proteins Hsp27, Hsp90, and Hsp70 and production of tumor necrosis factors (TNF-alpha, TNF-beta), interferon-gamma (IFN-gamma), interleukin-2, -3, -6, and nitric oxide (NO) were studied under conditions of acute and chronic intoxication of animals with lipopolysaccharides. Injection of endotoxin increased expression of heat shock proteins Hsp70 and Hsp90-alpha in mouse cells. Acute toxic stress also provoked a sharp increase in the production of TNF-alpha, TNF-beta, and NO in mouse cells. The production of other cytokines (interleukins and IFN-gamma) was changed insignificantly. In the model of chronic toxic stress, changes in the production of Hsp70, Hsp90, TNF, and NO were followed during 11 days after the beginning of the toxin injections. The expression of Hsp70 and Hsp90 in acute stress was significantly higher than at the final stage of the chronic exposure. The changes in the TNF and NO productions, on one hand, and the production of heat shock proteins, on the other hand, were synchronous. The findings indicate that repeated injections of increasing endotoxin doses result in a decreased ability of the body cells to respond to stress by overproduction of heat shock proteins, TNF, and NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号